- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Collatz-type problems with multiple divisors
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Collatz-type problems with multiple divisors Gunn, Keira
Abstract
The Collatz Conjecture hypothesizes that if a sequence of integers beginning with any positive integer t₀ is recursively defined so that t_j₊₁ = (t_j)/2 when t_j is even and t_j₊₁ = 3(t_j)+1 when t_j is odd, then there will be some j in the set of natural numbers such that t_j = 1.
I propose a similar family of problems (which I call systems) involving a set of prime divisors {p₁,...,p_k} and a multiplier m, where the sequence is recursively defined so that t_j₊₁ = (t_j)/(p₁) if t_j is divisible by p₁, t_(j₊₁) = (t_j)/(p₂) if t_j is divisible by p₂ but not p₁, t_(j+1) = (t_j)/(p₃) if t_j is divisible by p₃ but not p₁ or p₂ etc., and if t_j is not divisible by any of the primes, then t_(j₊₁) = m(t_j)₊₁.
Assuming the residues of the terms of these sequences behave randomly modulo p₁...p_k, I propose a multiplicative expectation and data to suggest that this is a reasonable model for these systems. If the expectation is less than 1, as in the case of the Collatz problem, then I hypothesize that any sequence will eventually result in some finite cycle.
As well, if my model for these systems is accurate, then I prove that the inclusion of an increasing prime q to a fixed set of prime divisors will result in an effect that gradually diminishes for the multiplicative expectation of the system.
Item Metadata
| Title |
Collatz-type problems with multiple divisors
|
| Creator | |
| Publisher |
University of British Columbia
|
| Date Issued |
2009
|
| Description |
The Collatz Conjecture hypothesizes that if a sequence of integers beginning with any positive integer t₀ is recursively defined so that t_j₊₁ = (t_j)/2 when t_j is even and t_j₊₁ = 3(t_j)+1 when t_j is odd, then there will be some j in the set of natural numbers such that t_j = 1.
I propose a similar family of problems (which I call systems) involving a set of prime divisors {p₁,...,p_k} and a multiplier m, where the sequence is recursively defined so that t_j₊₁ = (t_j)/(p₁) if t_j is divisible by p₁, t_(j₊₁) = (t_j)/(p₂) if t_j is divisible by p₂ but not p₁, t_(j+1) = (t_j)/(p₃) if t_j is divisible by p₃ but not p₁ or p₂ etc., and if t_j is not divisible by any of the primes, then t_(j₊₁) = m(t_j)₊₁.
Assuming the residues of the terms of these sequences behave randomly modulo p₁...p_k, I propose a multiplicative expectation and data to suggest that this is a reasonable model for these systems. If the expectation is less than 1, as in the case of the Collatz problem, then I hypothesize that any sequence will eventually result in some finite cycle.
As well, if my model for these systems is accurate, then I prove that the inclusion of an increasing prime q to a fixed set of prime divisors will result in an effect that gradually diminishes for the multiplicative expectation of the system.
|
| Extent |
453927 bytes
|
| Genre | |
| Type | |
| File Format |
application/pdf
|
| Language |
eng
|
| Date Available |
2009-08-31
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0067665
|
| URI | |
| Degree (Theses) | |
| Program (Theses) | |
| Affiliation | |
| Degree Grantor |
University of British Columbia
|
| Graduation Date |
2009-11
|
| Campus | |
| Scholarly Level |
Graduate
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International