UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Fabrication and characterization of silicon nitride nanopores Trivedi, Dhruti Mayur

Abstract

The fabrication of synthetic nanopores with dimensional and electrical properties similar to organic alpha-hemolysin (α-HL) nanopores is required for the development of a novel genotyping device. This thesis details the development of synthetic nanopores with diameters below 5 nm fabricated by sputtering a free standing silicon nitride membrane using a tightly focused electron beam. Nanometer control is achieved with sputtering rates of 0.5 – 0.75 nm/s. This technique is further extended to fabricate a proof-of-concept array of 44 sub-5 nm nanopores in a single membrane to enable the detection of unamplified genomic DNA with acceptable signal-to-noise. As-drilled inorganic nanopores have inferior electrical characteristics compared to α-HL. Careful study, however, revealed electrical noise sources that could be effectively reduced by chemical pretreatment of the pores and surface coating with poly-di-methyl-siloxane (PDMS). The chemical pretreatment targeted 1/f noise, while the PDMS reduced dielectric noise with an overall reduction in RMS current noise by a factor of 10. This resulted in processed nanopores with extremely favorable noise characteristics. These low noise silicon nitride nanopores were used to demonstrate single-molecule DNA translocation and probe capture with exceptional signal-to-noise ratios ranging from 40 – 150.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International