UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Residual stress measurement using cross-slitting and ESPI An, Yuntao


Residual stresses are “locked-in” within a material, and exist without any external loads. Such stresses are developed during most common manufacturing processes, for example welding, cold working and grinding. These “hidden” stresses can be quite large, and can have profound effects on engineering properties, notably fatigue life and dimensional stability. To obtain reliable and accurate residual stress measurements for uniform and non-uniform stress states, a novel and practical method using crossing-slitting and ESPI is presented here. Cross-slitting releases all three in-plane stress components and leaves nearby deformation areas intact. The ESPI (Electronic Speckle Pattern Interferometry) technique gives an attractive tool for practical use, because measurements provide a large quantity of useful data, require little initial setup and can be completed rapidly and at low per-measurement cost. A new ESPI setup consisting of shutter and double-mirror device is designed to achieve dual-axis measurements to balance the measurement sensitivities of all in-plane stress components. To evaluate data quality, a pixel quality control and correction procedure is also applied. This helps to locate bad data pixels and provides opportunities to correct them. The measurement results show that this procedure plays an important role for the success of residual stress evaluation. Based on the observed displacement data and finite element calculated calibration data, an inverse computation method is developed to recover the residual stresses in a material for both uniform and non-uniform cases. By combining cross-slitting and ESPI, more reliable results for the three in-plane residual stress components can be obtained.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International