UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Heavy element enrichment of the gas giant planets Coffey, Jaime Lee


According to both spectroscopic measurements and interior models, Jupiter, Saturn, Uranus and Neptune possess gaseous envelopes that are enriched in heavy elements compared to the Sun. Straightforward application of the dominant theories of gas giant formation - core accretion and gravitational instability - fail to provide the observed enrichment, suggesting that the surplus heavy elements were somehow dumped onto the planets after the envelopes were already in existence. Previous work has shown that if giant planets rapidly reached their cur rent configuration and radii, they do not accrete the remaining planetesimals efficiently enough to explain their observed heavy-element surplus. We ex plore the likely scenario that the effective accretion cross-sections of the giants were enhanced by the presence of the massive circumplanetary disks out of which their regular satellite systems formed. Perhaps surprisingly, we find that a simple model with protosatellite disks around Jupiter and Saturn can meet known constraints without tuning any parameters. Fur thermore, we show that the heavy-element budgets in Jupiter and Saturn can be matched slightly better if Saturn’s envelope (and disk) are formed roughly 0.1 — 10 Myr after that of Jupiter. We also show that giant planets forming in an initially-compact con figuration can acquire the observed enrichments if they are surrounded by similar protosatellite disks. Protosatellite disks efficiently increase the capture cross-section, and thus the metallicity, of the giant planets. Detailed models of planet formation must therefore account for the presence of such disks during the early stages of solar system formation.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International