- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Heavy element enrichment of the gas giant planets
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Heavy element enrichment of the gas giant planets Coffey, Jaime Lee
Abstract
According to both spectroscopic measurements and interior models, Jupiter, Saturn, Uranus and Neptune possess gaseous envelopes that are enriched in heavy elements compared to the Sun. Straightforward application of the dominant theories of gas giant formation - core accretion and gravitational instability - fail to provide the observed enrichment, suggesting that the surplus heavy elements were somehow dumped onto the planets after the envelopes were already in existence. Previous work has shown that if giant planets rapidly reached their cur rent configuration and radii, they do not accrete the remaining planetesimals efficiently enough to explain their observed heavy-element surplus. We ex plore the likely scenario that the effective accretion cross-sections of the giants were enhanced by the presence of the massive circumplanetary disks out of which their regular satellite systems formed. Perhaps surprisingly, we find that a simple model with protosatellite disks around Jupiter and Saturn can meet known constraints without tuning any parameters. Fur thermore, we show that the heavy-element budgets in Jupiter and Saturn can be matched slightly better if Saturn’s envelope (and disk) are formed roughly 0.1 — 10 Myr after that of Jupiter. We also show that giant planets forming in an initially-compact con figuration can acquire the observed enrichments if they are surrounded by similar protosatellite disks. Protosatellite disks efficiently increase the capture cross-section, and thus the metallicity, of the giant planets. Detailed models of planet formation must therefore account for the presence of such disks during the early stages of solar system formation.
Item Metadata
Title |
Heavy element enrichment of the gas giant planets
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2008
|
Description |
According to both spectroscopic measurements and interior models, Jupiter,
Saturn, Uranus and Neptune possess gaseous envelopes that are enriched in
heavy elements compared to the Sun. Straightforward application of the
dominant theories of gas giant formation - core accretion and gravitational
instability - fail to provide the observed enrichment, suggesting that the
surplus heavy elements were somehow dumped onto the planets after the
envelopes were already in existence.
Previous work has shown that if giant planets rapidly reached their cur
rent configuration and radii, they do not accrete the remaining planetesimals
efficiently enough to explain their observed heavy-element surplus. We ex
plore the likely scenario that the effective accretion cross-sections of the
giants were enhanced by the presence of the massive circumplanetary disks
out of which their regular satellite systems formed. Perhaps surprisingly,
we find that a simple model with protosatellite disks around Jupiter and
Saturn can meet known constraints without tuning any parameters. Fur
thermore, we show that the heavy-element budgets in Jupiter and Saturn
can be matched slightly better if Saturn’s envelope (and disk) are formed
roughly 0.1 — 10 Myr after that of Jupiter.
We also show that giant planets forming in an initially-compact con
figuration can acquire the observed enrichments if they are surrounded by
similar protosatellite disks.
Protosatellite disks efficiently increase the capture cross-section, and thus
the metallicity, of the giant planets. Detailed models of planet formation
must therefore account for the presence of such disks during the early stages
of solar system formation.
|
Extent |
922632 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2009-02-02
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0066921
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2008-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International