UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Investigation of the phosphatidylinositol 3-kinase pathway in B cells Ma, Kewei


There is hardly a cellular process that is not regulated in some way by phosphoinositides, which makes biochemical and physiological studies of these lipids extremely important. PI 3-kinases are key regulators of phosphoinositide metabolism and have been shown to affect a large variety of cellular responses. The key products of PI 3-kinases that have functional activity in higher eukaryotic cells are PI(3,4,5)P₃ and PI(3,4)P₂. PI(3,4,5)P₃ is universally accepted as one of the most important second messengers in signal transduction. However, our knowledge of the functions of PI(3,4)P₂ as a lipid second messenger is much less precise. In this dissertation, work was undertaken to elucidate the regulation of PI(3,4,5)P₃ and PI(3,4)P₂ production and downstream signaling in B cells. Cells with membrane targeted exogenous SHIP were utilized to manipulate phosphoinositide levels. The relationship of PI(3,4,5)P₃ and PI(3,4)P₂ levels to downstream PKB phosphorylation and activation was studied. PI(3,4,5)P₃ and PI(3,4)P₂ levels were found to closely correlate with PKB phosphorylation levels at Thr308 and Ser473, respectively. In addition, PI(3,4)P₂ levels determine the PKB activity in the cytosol; while PI(3,4,5)P₃ levels determine PKB activity at the plasma membrane. Different doses and different forms of B cell receptor (BCR) agonists were used for stimulation. PI 3-kinase activation was studied carefully following stimulation with low doses of anti-BCR antibody and F(ab')₂ fragments. Low concentrations of F(ab')₂ fragments produced higher levels of PI(3,4,5)P₃ than did a high concentration of F(ab')₂ fragments. Downstream PKB signaling was studied in these models. Similar conclusions were drawn from both SHIP over-expressing BJAB cells and dose-dependent BCR stimulations. We speculated that phosphoinositides’ regulation of the kinetics of PKB phosphorylation at Ser473 and Thr308 might be mediated by additional proteins. Investigation of plasma membrane-associated PKB showed that it formed a protein complex of around 400KD, which we attempted to characterize further with respect to PKB phosphorylation and association with lipids. In conclusion, phosphoinositide production is intricately regulated in vivo to control downstream signaling. The levels of PI(3,4)P₂ and PI(3,4,5)P₃ have precise and profound effects on PKB and other molecules such as TAPP and Bam32. This study has contributed new insight into the PI 3-kinase signaling pathway from the aspect of phosphoinositide lipid function.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International