UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Charaterization of RNA silencing and avirulence in two related smut fungi Laurie, John Drummond

Abstract

The basidiomycete cereal pathogens Ustilago hordei and U. maydis are closely related and possess genomes with a high degree of homology and synteny. I report on the disparity of the RNAi phenomenon between U. hordei and U. maydis. Using an RNAi expression vector I targeted both a GUS transgene and an endogenous mating-type gene and confirmed the presence of double-stranded (ds)RNA in transgenic cells of both species. However, down-regulation of the GUS gene and production of siRNAs were seen only in U. hordei. The biological effect was a reduction in GUS protein and activity, and reduced mating only in U. hordei. In support of this experimental evidence, homologs to Dicer and Argonaute were found in the U. hordei genome but not in the published U. maydis genome. Interestingly, preliminary U. hordei sequences reveal conservation and synteny in U. maydis in the regions spanning these loci, with the only noticeable difference being the lack of Dicer and Argonaute genes in U. maydis. U. maydis also appears to differ from U. hordei with respect to genes presumed to be involved in transcriptional gene silencing and also has far fewer transposons in its genome. Efforts to clone the avirulent gene UhAvr1 led to a locus containing a large number of small proteins predicted to be secreted. This locus appears to be heterochromatic and is orthologous to the largest cluster of secreted proteins in U. maydis. Other laboratories have reported that deletion of this cluster in U. maydis results in a dramatic reduction in virulence. Genetic evidence for an avirulence gene at this locus in U. hordei suggests that the locus may also be important for U. hordei. Differences between these two smut fungi at this locus and at others identified in this study point to key differences in gene regulation and genome evolution.

Item Media

Item Citations and Data

License

Attribution-NonCommercial-NoDerivatives 4.0 International

Usage Statistics