UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Differential changes in gene expression in cultured human retinal pigment epithelial cells after beta-amyloid stimulation Kurji, Khaliq


Age related macular degeneration (AMD) is the most common cause of irreversible vision loss in the elderly. At present, there are an estimated one million people in Canada with some form of AMD and this number is expected to double to two million by 2031. These estimates are sobering, and it is predicted that costs for treatment and care of individuals who suffer vision loss from AMD will have significant impact on the social and public health systems in Canada in the next two decades. There are treatments to slow the progression of vision loss, but unfortunately, there are currently no cures available for AMD. In order to develop effective second generation therapies and cures, further insights into how and why AMD develops are greatly needed. Recent studies have provided novel insights into the role of inflammation in the pathogenesis of AMD. Inflammation, or swelling of the retinal tissues, causes harmful processes that promote macular degeneration. The proposed studies will focus on the triggers of inflammation in the retina. It is hypothesized that macular degeneration may be slowed or stopped by eliminating the molecules that cause inflammation in the retina. This study will focus on amyloid beta (Aβ), a toxic molecule that has been implicated in retinal inflammation, and the role that it may play in gene expression of the retinal pigment epithelial cell. Amyloid beta is a well studied peptide in another age related disorder, Alzheimer’s disease. It is the major extracellular deposit in Alzheimer’s disease plaques, and has recently been discovered as a component of drusen, the hallmark extracellular deposits in the retina of patients with the ‘dry’ form of AMD. These studies will allow the development of new treatment regimens that target retinal inflammation and thus minimize the processes that ‘trigger’ the onset of macular degeneration.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International