UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Investigation of wireless local area network facilitated angle of arrival indoor location Wong, Carl Monway


As wireless devices become more common, the ability to position a wireless device has become a topic of importance. Accurate positioning through technologies such as the Global Positioning System is possible for outdoor environments. Indoor environments pose a different challenge, and research continues to position users indoors. Due to the prevalence of wireless local area networks (WLANs) in many indoor spaces, it is prudent to determine their capabilities for the purposes of positioning. Signal strength and time based positioning systems have been studied for WLANs. Direction or angle of arrival (AOA) based positioning will be possible with multiple antenna arrays, such as those included with upcoming devices based on the IEEE 802.11n standard. The potential performance of such a system is evaluated. The positioning performance of such a system depends on the accuracy of the AOA estimation as well as the positioning algorithm. Two different maximum-likelihood (ML) derived algorithms are used to determine the AOA of the mobile user: a specialized simple ML algorithm, and the space- alternating generalized expectation-maximization (SAGE) channel parameter estimation algorithm. The algorithms are used to determine the error in estimating AOAs through the use of real wireless signals captured in an indoor office environment. The statistics of the AOA error are used in a positioning simulation to predict the positioning performance. A least squares (LS) technique as well as the popular extended Kalman filter (EKF) are used to combine the AOAs to determine position. The position simulation shows that AOA- based positioning using WLANs indoors has the potential to position a wireless user with an accuracy of about 2 m. This is comparable to other positioning systems previously developed for WLANs.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International