UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Dihedral quintic fields with a power basis Lavallee, Melisa Jean


Cryptography is defined to be the practice and studying of hiding information and is used in applications present today; examples include the security of ATM cards and computer passwords ([34]). In order to transform information to make it unreadable, one needs a series of algorithms. Many of these algorithms are based on elliptic curves because they require fewer bits. To use such algorithms, one must find the rational points on an elliptic curve. The study of Algebraic Number Theory, and in particular, rare objects known as power bases, help determine what these rational points are. With such broad applications, studying power bases is an interesting topic with many research opportunities, one of which is given below. There are many similarities between Cyclic and Dihedral fields of prime degree; more specifically, the structure of their field discriminants is comparable. Since the existence of power bases (i.e. monogenicity) is based upon finding solutions to the index form equation - an equation dependant on field discriminants - does this imply monogenic properties of such fields are also analogous? For instance, in [14], Marie-Nicole Gras has shown there is only one monogenic cyclic field of degree 5. Is there a similar result for dihedral fields of degree 5? The purpose of this thesis is to show that there exist infinitely many monogenic dihedral quintic fields and hence, not just one or finitely many. We do so by using a well- known family of quintic polynomials with Galois group D₅. Thus, the main theorem given in this thesis will confirm that monogenic properties between cyclic and dihedral quintic fields are not always correlative.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International