UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Reorganization of brain function during force production after stroke Kokotilo, Kristen J.


Damage to motor areas of the brain, caused by stroke, can produce devastating motor deficits, including aberrant control of force. After stroke, reorganization of the brain’s motor system has been identified as one of the fundamental mechanisms involved in recovery of motor control after stroke. Yet, few studies have investigated how force production and modulation are encoded in the brain after stroke and how this relates to motor outcome. Thus, the purpose of this study was to (1) understand how past neuroimaging literature has contributed to establishing common patterns of brain reorganization during both relative and absolute force production after stroke, (2) examine how brain function is reorganized during force production and modulation in individuals with stroke, and (3) relate this task-related reorganization of brain function to the amount of paretic arm use after stroke. In the second chapter, we systematically reviewed all relevant literature examining brain activation during force production after stroke. The following chapters (chapters 3 and 4) applied functional magnetic resonance imaging (fMRI) to examine the neural correlates of force production and modulation after stroke. Chapter 2 supports differences in task-related brain activation dependent on features of stroke, such as severity and chronicity, as well as influence of rehabilitation. In addition, results suggest that activation of common motor areas of the brain during force production can be identified in relation to functional outcome after stroke. Results from the subsequent two chapters (3 and 4), demonstrate that brain function reorganizes in terms of absolute, and not relative force production after stroke. Specifically, stroke participants exhibit greater activation of motor areas than healthy controls when matched for absolute force production. Moreover, there is a relationship between paretic arm usage and brain activation, where stroke participants having less paretic arm use, as measured using wrist accelerometers, exhibit higher brain activation. Results of this thesis suggest that during absolute force production, brain activation may approach near maximal levels in stroke participants at lower forces than healthy controls. Furthermore, this effect may be amplified even further in subjects with less paretic arm usage, as increased activation in motor areas occurs in participants with less arm use after stroke. Ultimately, the results from this thesis will contribute to research relevant to brain reorganization in individuals with stroke and may lead to the development of new, beneficial therapeutic interventions that optimize brain reorganization and improve functional recovery after stroke.

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International