- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- High-frequency limits of carbon nanotube transistors
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
High-frequency limits of carbon nanotube transistors Chen, Li
Abstract
This thesis is focused on the high-frequency performance of carbon nanotube field-effect transistors (CNFETs). Such transistors show their promising performance in the nanoscale regime where quantum mechanics dominates. The short-circuit, common-source, unity-current-gain frequency ft is analyzed through regional signal-delay theory. An energy-dependent effective-mass feature has been added to an existing SP solver and used to compare with results from a constant-effective-mass SP solver. At high drain bias, where electron energies considerably higher than the edge of the first conduction sub-band may be encountered, ft for CNFETs is significantly reduced with respect to predictions using a constant effective mass. The opinion that the band-structure-determined velocity limits the high-frequency performance has been reinforced by performing simulations for p-i-n and n-i-n CNFETs. This necessitated incorporating band-to-band tunneling into the SP solver. Finally, to help put the results from different CNFETs into perspective, a meaningful comparison between CNFETs with doped-contacts and metallic contacts has been made. Band-to-band tunneling, which is a characteristic feature of p-i-n CNFETs, can also occur in n-i-n CNFETs, and it reduces the ft dramatically.
Item Metadata
Title |
High-frequency limits of carbon nanotube transistors
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2008
|
Description |
This thesis is focused on the high-frequency performance of carbon nanotube field-effect transistors (CNFETs). Such transistors show their promising performance in the nanoscale regime where quantum mechanics dominates. The short-circuit, common-source, unity-current-gain frequency ft is analyzed through regional signal-delay theory. An energy-dependent effective-mass feature has been added to an existing SP solver and used to compare with results from a constant-effective-mass SP solver. At high drain bias, where electron energies considerably higher than the edge of the first conduction sub-band may be encountered, ft for CNFETs is significantly reduced with respect to predictions using a constant effective mass. The opinion that the band-structure-determined velocity limits the high-frequency performance has been reinforced by performing simulations for p-i-n and n-i-n CNFETs. This necessitated incorporating band-to-band tunneling into the SP solver. Finally, to help put the results from different CNFETs into perspective, a meaningful comparison between CNFETs with doped-contacts and metallic contacts has been made. Band-to-band tunneling, which is a characteristic feature of p-i-n CNFETs, can also occur in n-i-n CNFETs, and it reduces the ft dramatically.
|
Extent |
1086231 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2008-10-07
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0066682
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2008-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International