- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Removal of iron by ion exchange from copper electrowinning...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Removal of iron by ion exchange from copper electrowinning electrolyte solutions containing antimony and bismuth McKevitt, Bethan Ruth
Abstract
In order to increase the current efficiency in copper electrowinning tankhouses, iron can be removed from the electrolyte using ion exchange. While this is a proven technology, very little data is available for the application of this technology to copper electrowinning electrolytes containing antimony and bismuth. The feasibility of utilizing iron ion exchange for the removal of iron from copper electrowinning electrolytes containing antimony and bismuth was studied in the laboratory. A picolylamine, a sulphonated diphosphonic, an aminophosphonic and three sulphonated monophosphonic resins were tested. The picolylamine resin was found to be completely impractical as it loaded high levels of copper. All the phosphonic resins tested loaded an appreciable amount of antimony, however, only the aminophosponic resin loaded an appreciable amount of bismuth. Tests to determine whether or not the sulphonated monophosphonic Purolite 5957 resin would continue to load antimony with time and, hence, reduce the resin's ability to remove iron gave inconclusive results. In the event that the resin's ability to remove iron is hampered due to antimony loading, testing has shown that the resin performance may be restored via a regeneration with a solution containing sulphuric acid and sodium chloride. A case study for the application of this technology to the CVRD Inco CRED plant has shown that, while iron removal by ion exchange is technically feasible, it will upset the plant's acid balance in electrolyte. Therefore, an acid removal process would need to be implemented in tandem with an iron ion exchange system. Additionally, preliminary calculations suggest that a system with a single ion exchange column may have difficulty removing sufficient iron for the CRED design conditions. Therefore, consideration should be given to the possibility of utilizing a two column system (one column loading, one column stripping).
Item Metadata
Title |
Removal of iron by ion exchange from copper electrowinning electrolyte solutions containing antimony and bismuth
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2007
|
Description |
In order to increase the current efficiency in copper electrowinning tankhouses, iron can be removed from the electrolyte using ion exchange. While this is a proven technology, very little data is available for the application of this technology to copper electrowinning electrolytes containing antimony and bismuth.
The feasibility of utilizing iron ion exchange for the removal of iron from copper electrowinning electrolytes containing antimony and bismuth was studied in the laboratory. A picolylamine, a sulphonated diphosphonic, an aminophosphonic and three sulphonated monophosphonic resins were tested. The picolylamine resin was found to be completely impractical as it loaded high levels of copper. All the phosphonic resins tested loaded an appreciable amount of antimony, however, only the aminophosponic resin loaded an appreciable amount of bismuth.
Tests to determine whether or not the sulphonated monophosphonic Purolite 5957 resin would continue to load antimony with time and, hence, reduce the resin's ability to remove iron gave inconclusive results. In the event that the resin's ability to remove iron is hampered due to antimony loading, testing has shown that the resin performance may be restored via a regeneration with a solution containing sulphuric acid and sodium chloride.
A case study for the application of this technology to the CVRD Inco CRED plant has shown that, while iron removal by ion exchange is technically feasible, it will upset the plant's acid balance in electrolyte. Therefore, an acid removal process would need to be implemented in tandem with an iron ion exchange system. Additionally, preliminary calculations suggest that a system with a single ion exchange column may have difficulty removing sufficient iron for the CRED design conditions. Therefore, consideration should be given to the possibility of utilizing a two column system (one column loading, one column stripping).
|
Extent |
8591608 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2008-09-05
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0066602
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2008-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International