UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Defining the biological role of FOXP3 in human CD4+ T cells Allan, Sarah E.

Abstract

The involvement of regulatory T cells (Tregs) in immune homeostasis is now recognized as one of the fundamental mechanisms of immune tolerance. While several different types of Tregs cooperate to establish and maintain immune homeostasis, much current research is focused on defining the characteristics of the CD4⁺CD25⁺ Treg subset, as these cells can mediate dominant, long-lasting and transferable tolerance in many experimental models. The aim of this research was to characterize the biological role of a protein known as forkhead box P3 (FOXP3) that was initially identified as an essential transcription factor for the development of mouse CD4⁺CD25⁺ Tregs, in human CD4⁺ T cells. Following confirmation that, like mouse Tregs, human Tregs also expressed high levels of FOXP3, several approaches were used to investigate the role of this protein in human CD4⁺ T cells. 1) Characterization of endogenous FOXP3 expression in CD4⁺ T cell subsets revealed that this protein is not a Treg-specific marker as was previously thought. Instead, low-level and transient expression was found to be typical of highly activated non-regulatory effector T cells. 2) To generate large numbers of Tregs suitable for cellular therapy, the capacity of ectopic FOXP3 expression to drive Treg generation in vitro was explored. It was found that high and constitutive expression mediated by a lentiviral vector, but not fluctuating expression driven by a retroviral vector, was sufficient to generate suppressive cells. Over-expression strategies were also used to characterize a novel splice isoform unique to human cells, FOXP3Δ2 (FOXP3b). 3) To further probe the requirements of FOXP3 to induce suppressor function, a system for conditionally-active FOXP3 ectopic expression was developed. These studies established that FOXP3 acts a quantitative regulator rather than a “master switch” for Tregs, and that there is a temporal component to its capacity to direct Treg phenotype and function. In summary, this research has significantly expanded the understanding of the biological function of FOXP3 in human CD4⁺ T cells. Based on the potential of these cells to be manipulated for therapy, this work contributes to the field of immunology on both academic and clinical research fronts.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International