UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

An assessment of the representation of fire severity and coarse woody debris dynamics in an ecosystem management model Boldor, Irina Angelica

Abstract

Fire is the most significant natural disturbance agent in the MSdm biogeoclimatic subzone and has a determinant role in the dynamics of lodgepole pine (Pinus contorta ssp. latifolia Engelm.ex S.Wats.) dominated forests. Fire severity is a controversial term that usually refers to a qualitative measure of the fire effects on soil and vegetation and ultimately on ecosystem sustainability. The main objective of the thesis was to evaluate methods for quantifying and modelling the effects of fire severity on live biomass and dead organic matter and post-fire coarse woody debris (CWD) dynamics. A review of the representation of fire in models was conducted and several of the most commonly used fire models in North America have been described in terms of fire severity representation. The potential for developing the fire severity concept as a fire effects descriptor in an ecosystem management model were assessed. Severity matrices summarizing the probabilities of occurrence for fires of varying severity were constructed for two sites in the MSdm biogeoclimatic subzone of British Columbia, using weather data and past fire records. These matrices provide information to improve fire representation in the ecosystem based model FORECAST by quantifying the effects of fire severity on dead and live biomass components. Although this represents only a preliminary step, the severity matrix approach appears toprovide a viable methodology for improving the representation of fire effects in FORECAST. Patterns of post-fire coarse woody debris (CWD) accumulation were also assessed in the context of model development. Data were collected from a chronosequence of fire affected sites in the MSdm subzone of the TFL 49 Kelowna. The ability of the FORECAST model to simulate accumulation patterns in CWD and soil organic matter and nitrogen following fire was tested by comparing model outputs with field data. The evaluation of the model against chronosequence-derived data highlighted the fact that caution needs to be taken when using such data for model testing. The very slow recruitment pattern for new CWD illustrates the need to retain sources of CWD recruitment following fire by not salvage logging all killed trees and/or surviving live trees.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International