UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Role of phosphatases in controlling arabidopsis mapk signalling cascades Lee, Jin Suk

Abstract

Plants possess integrated signalling networks that mediate the responses to various environmental conditions. Mitogen-activated protein kinases (MAPKs) constitute a highly conserved family of enzymes in eukaryotes, and in plants MAPK-based signal transduction modules regulate a large number of physiological processes, including responses to environmental stresses and phytohormones. Regulated dephosphorylation of active MAPKs is a key component of the control of MAPK signalling cascades, and in mammals, members of the MAPK phosphatase (MKP) sub-class of dual-specificity tyrosine phosphatases have been recognized as key players for inactivating MAPKs. Five MKP homologues are found in Arabidopsis thaliana, but only limited information is available concerning their properties and biological roles. Based on initial data derived from my reverse genetics and protein interaction studies of these five potential MKPs, as well as gene function information in the literature, I chose to focus on two putative Arabidopsis MKPs, AtMKP2 and Indole-3-Butyric Acid-response 5 (IBR5). By using a combination of genetic and biochemical studies, I established that the previously uncharacterized MKP designated AtMKP2, participates in the regulation of cellular homeostasis in ozone-challenged tissue, and can influence the activation state of two MAPKs, MPK3 and MPK6. AtMKP2-suppressed plants displayed significantly prolonged MPK3 and MPK6 activation during ozone treatment, and recombinant AtMKP2 was able to dephosphorylate both phospho-MPK3 and phospho-MPK6 in vitro, providing direct evidence that AtMKP2 may target these oxidant-activated MAPKs. A mutation in IBR5, one of the five potential AtMKPs, was previously reported to confer reduced sensitivity to auxin and ABA in Arabidopsis. My protein interaction studies demonstrated that IBR5 and MPK12 are physically coupled and that the C-terminus of MPK12 is essential for its interaction with IBR5. In vitro dephosphorylation assays indicated that recombinant phosphoMPK12 is efficiently dephosphorylated by IBR5. In transgenic plants with reduced expression of the MPK12 gene, root growth is hypersensitive to exogenous auxins, consistent with the lower auxin sensitivity reported for ibr5 mutants. Taken together, my data demonstrate for the first time that both AtMKP2 and IBR5 are bona fide Arabidopsis MAPK phosphatases and that they serve as important regulators of oxidative stress and auxin signalling, respectively, in Arabidopsis.

Item Media

Item Citations and Data

License

Attribution-NonCommercial-NoDerivatives 4.0 International

Usage Statistics