UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Identification of gene expression changes in human cancer using bioinformatic approaches Griffith, Obi Lee


The human genome contains tens of thousands of gene loci which code for an even greater number of protein and RNA products. The highly complex temporal and spatial expression of these genes makes possible all the biological processes of life. Altered gene expression by mutation or deregulation is fundamental for the development of many human diseases. The ultimate aim of this thesis was to identify gene expression changes relevant to cancer. The advent of genome-wide expression profiling techniques, such as microarrays, has provided powerful new tools to identify such changes and researchers are now faced with an explosion of gene expression data. Processing, comparing and integrating these data present major challenges. I approached these challenges by developing and assessing novel methods for cross-platform analysis of expression data, scalable subspace clustering, and curation of experimental gene regulation data from the published literature. I found that combining results from different expression platforms increases reliability of coexpression predictions. However, I also observed that global correlation between platforms was generally low, and few gene pairs reached reasonable thresholds for high-confidence coexpression. Therefore, I developed a novel subspace clustering algorithm, able to identify coexpressed genes in experimental subsets of very large gene expression datasets. Biological assessment against several metrics indicates that this algorithm performs well. I also developed a novel meta-analysis method to identify consistently reported genes from differential expression studies when raw data are unavailable. This method was applied to thyroid cancer, producing a ranked list of significantly over-represented genes. Tissue microarray analysis of some of these candidates and others identified a number of promising biomarkers for diagnostic and prognostic classification of thyroid cancer. Finally, I present ORegAnno (www.oreganno.org), a resource for the community-driven curation of experimentally verified regulatory sequences. This resource has proven a great success with ~30,000 sequences entered from over 900 publications by ~50 contributing users. These data, methods and resources contribute to our overall understanding of gene regulation, gene expression, and the changes that occur in cancer. Such an understanding should help identify new cancer mechanisms, potential treatment targets, and have significant diagnostic and prognostic implications.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International