- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Space-time continuous phase modulation
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Space-time continuous phase modulation Silvester, Anna-Marie
Abstract
The combination of Space-Time (ST) coding and Continuous-Phase Modulation (CPM) produces a low power, energy efficient communication scheme suitable for wireless transmission. Space-time coding increases the reliability of transmission, and continuous-phase modulation (CPM) has the potential to provide considerable energy savings. CPM is a modulation technique that involves the transmission of a signal with continuous-phase and a constant envelope, where the continuous-phase property produces a very bandwidth efficient signal, and the constant-envelope property enables non linear (and thus energy efficient) signal amplification. The ST-CPM code is of special interest for wireless sensors because in the wireless sensor network environment energy consumption is highly constrained. The combination of ST codes and CPM is non-trivial and thus ST-CPM codes based upon block-based orthogonal and diagonal signal matrices are presented. These codes are forms the basis of a distributed ST-CPM code. The distributed ST codes are designed to operate in wireless networks containing a large set of nodes, of which only a small a priori unknown subset will be active at any time. The devised distributed ST-CPM scheme combines the ST-CPM code with a diagonal signaling matrix, (commonly assigned to all relay nodes) with signature vectors(uniquely assigned to nodes). The energy consumption of the proposed distributed ST-CPM scheme is compared with that of a distributed ST linear modulation (LM) scheme. The distributed ST-CPM scheme is shown to outperform the distributed ST-LM scheme for all but short-range transmission. Finally, a serially concatenated code for ST-CPM is proposed. The concatenated code consists of the diagonal signalling matrix as the inner code, and a class of double parity check (DPC) codes as the outer code. The resulting concatenated codes that are formed from the ST-CPM code and a DPC code are shown to provide performance close to capacity, and to provide performance superior to that provided by the more common combination of CPM, or ST-CPM schemes with convolutional codes.
Item Metadata
Title |
Space-time continuous phase modulation
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2009
|
Description |
The combination of Space-Time (ST) coding and Continuous-Phase Modulation (CPM) produces a low power, energy efficient communication scheme suitable for wireless transmission. Space-time coding increases the reliability of transmission, and continuous-phase modulation (CPM) has the
potential to provide considerable energy savings. CPM is a modulation technique that involves the transmission of a signal with continuous-phase and a constant envelope, where the continuous-phase property produces a very bandwidth efficient signal, and the constant-envelope property enables non
linear (and thus energy efficient) signal amplification. The ST-CPM code is of special interest for wireless sensors because in the wireless sensor network environment energy consumption is highly constrained. The combination of ST codes and CPM is non-trivial and thus ST-CPM codes based upon
block-based orthogonal and diagonal signal matrices are presented. These codes are forms the basis of a distributed ST-CPM code. The distributed ST codes are designed to operate in wireless networks containing a large set of nodes, of which only a small a priori unknown subset will be active at any
time. The devised distributed ST-CPM scheme combines the ST-CPM code with a diagonal signaling matrix, (commonly assigned to all relay nodes) with signature vectors(uniquely assigned to nodes). The energy consumption of the proposed distributed ST-CPM scheme is compared with that of a distributed ST linear modulation (LM) scheme. The distributed ST-CPM scheme is shown to
outperform the distributed ST-LM scheme for all but short-range transmission. Finally, a serially concatenated code for ST-CPM is proposed. The concatenated code consists of the diagonal signalling matrix as the inner code, and a class of double parity check (DPC) codes as the outer code. The
resulting concatenated codes that are formed from the ST-CPM code and a DPC code are shown to provide performance close to capacity, and to provide performance superior to that provided by the more common combination of CPM, or ST-CPM schemes with convolutional codes.
|
Extent |
5467033 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2009-11-09
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0065881
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2009-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International