- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Design and modeling of a MEMS-based accelerometer with...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Design and modeling of a MEMS-based accelerometer with pull in analysis Kannan, Akila
Abstract
This thesis reports the design and modelling of a MEMS (Micro Electro Mechanical system) based inertial accelerometer. The main motivation to design a differential type of accelerometer is that such a kind of structure allows differential electrostatic actuation and capacitive sensing. They can be operated at the border of stability also so that the “pull in” operation mode can be explored. Such kinds of structures have a wide range of applications because of their high sensitivity. One is in the field of minimally invasive surgery where accelerometers will be combined with gyroscopes to be used in the navigation of surgical tools as a inertial micro unit (IMU). The choice for the design of a structure with 1 Degree ofFreedom(DOF) , instead of a 2-DOF device was instigated by the simplicity of the design and by a more efficient 1-DOF dynamic model. The accelerometers were designed and optimized using the MATLAB simulator and COVENTORWARE simulation tool. First set of devices is fabricated using a commercial foundry process called SOIMUMPs. The simulation tests show that the SOl accelerometer system yields 8.8kHz resonant frequency, with a quality factor of 10 and 2.l2mV/g sensitivity. To characterize the accelerometer a new semi automatic tool was formulated for the noise analysis and noise based optimization of the accelerometer design and the analysis estimation shows that there is a trade off between the SIN ratio and the sensitivity and for the given design could be made much better in terms of SIN by tuning its resonant frequency.
Item Metadata
Title |
Design and modeling of a MEMS-based accelerometer with pull in analysis
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2008
|
Description |
This thesis reports the design and modelling of a MEMS (Micro Electro Mechanical
system) based inertial accelerometer. The main motivation to design a differential type of
accelerometer is that such a kind of structure allows differential electrostatic actuation and
capacitive sensing. They can be operated at the border of stability also so that the “pull in”
operation mode can be explored. Such kinds of structures have a wide range of applications
because of their high sensitivity. One is in the field of minimally invasive surgery where
accelerometers will be combined with gyroscopes to be used in the navigation of surgical
tools as a inertial micro unit (IMU). The choice for the design of a structure with 1 Degree
ofFreedom(DOF) , instead of a 2-DOF device was instigated by the simplicity of the design
and by a more efficient 1-DOF dynamic model. The accelerometers were designed and optimized using the MATLAB simulator and COVENTORWARE simulation tool. First set
of devices is fabricated using a commercial foundry process called SOIMUMPs. The simulation tests show that the SOl accelerometer system yields 8.8kHz resonant frequency,
with a quality factor of 10 and 2.l2mV/g sensitivity. To characterize the accelerometer a
new semi automatic tool was formulated for the noise analysis and noise based optimization of the accelerometer design and the analysis estimation shows that there is a trade off
between the SIN ratio and the sensitivity and for the given design could be made much better in terms of SIN by tuning its resonant frequency.
|
Extent |
3925090 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2009-02-03
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0065590
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2008-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International