- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Pilot-scale study of removal of anionic surfactants...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Pilot-scale study of removal of anionic surfactants with trickling filter Guo, Feng
Abstract
Anionic surfactants are wildly used in many industrial and household applications. Because anionic surfactants are used so widely, significant attention has focused on the removal of these contaminants from wastewater. Among various treatment techniques, biofiltration, such as trickling filter technologies, has been employed in many wastewater treatment plants (WWPTs) to remove anionic surfactants. However, current knowledge of the efficacy of trickling filter to remove anionic surfactants from wastewaters is limited. The present study characterized the performance of a high rate (i.e. roughing) trickling filter to remove anionic surfactants both at lab-scale and pilot-scale. Lab-scale tests investigated the biodegradation of anionic surfactants under controllable conditions were compared with those from previous studies by others. Pilot-scale tests investigated the efficacy of a trickling filter at removing anionic surfactants from a wastewater over an extended period of time. The data from the pilot-scale tests were used to model the performance of trickling filter at removing anionic surfactants from the wastewater, using first order and modified Velz models. The lab-scale tests indicated that high molecular weight anionic surfactants degrade faster than the low molecular weight surfactants. The biodegradation rates observed in the present study were similar to those from pervious studies by others. The pilot-scale tests indicated that roughing trickling filter could remove 11% to 29% of anionic surfactants and 4% to 22% of COD from the wastewater. Higher molecular weight anionic surfactants were more degradable. The experimental data could be accurately modeled using the modified Velz model (R² value more than 0.9). The degradation rates of modified Velz model for total anionic surfactants, high molecular weight anionic surfactants and COD were 0.053±0.0057, 0.088±0.0048 and 0.119±0.0111 (mIs)0.5 respectively. The pilot-scale test results indicated that a high rate (i.e., roughing) trickling filter was not capable of effectively removing anionic surfactants in the primary effluent at Lions Gate WWTP because a relatively large trickling filter area would be required to achieve the required surfactant removal efficiency.
Item Metadata
Title |
Pilot-scale study of removal of anionic surfactants with trickling filter
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2008
|
Description |
Anionic surfactants are wildly used in many industrial and household applications.
Because anionic surfactants are used so widely, significant attention has focused on
the removal of these contaminants from wastewater. Among various treatment
techniques, biofiltration, such as trickling filter technologies, has been employed in
many wastewater treatment plants (WWPTs) to remove anionic surfactants. However,
current knowledge of the efficacy of trickling filter to remove anionic surfactants
from wastewaters is limited. The present study characterized the performance of a
high rate (i.e. roughing) trickling filter to remove anionic surfactants both at lab-scale
and pilot-scale. Lab-scale tests investigated the biodegradation of anionic surfactants
under controllable conditions were compared with those from previous studies by
others. Pilot-scale tests investigated the efficacy of a trickling filter at removing
anionic surfactants from a wastewater over an extended period of time. The data from
the pilot-scale tests were used to model the performance of trickling filter at removing
anionic surfactants from the wastewater, using first order and modified Velz models.
The lab-scale tests indicated that high molecular weight anionic surfactants
degrade faster than the low molecular weight surfactants. The biodegradation rates
observed in the present study were similar to those from pervious studies by others.
The pilot-scale tests indicated that roughing trickling filter could remove 11% to 29%
of anionic surfactants and 4% to 22% of COD from the wastewater. Higher molecular
weight anionic surfactants were more degradable.
The experimental data could be accurately modeled using the modified Velz
model (R² value more than 0.9). The degradation rates of modified Velz model for
total anionic surfactants, high molecular weight anionic surfactants and COD were
0.053±0.0057, 0.088±0.0048 and 0.119±0.0111 (mIs)0.5 respectively.
The pilot-scale test results indicated that a high rate (i.e., roughing) trickling filter
was not capable of effectively removing anionic surfactants in the primary effluent at
Lions Gate WWTP because a relatively large trickling filter area would be required to
achieve the required surfactant removal efficiency.
|
Extent |
2083223 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2009-02-02
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0063094
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2008-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International