UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Energy transfer and grain size effects during the Standard Penetration Test (SPT) and Large Penetration Test (LPT) Daniel, Christopher Ryan


The Standard Penetration Test (SPT) is the most widely used in-situ soil test in the world. "Large Penetration Test" (LPT) is a term used to describe any scaled up version of the SPT. Several types of LPT have been developed around the world for the purpose of characterizing gravel deposits, as SPT blow counts are less reliable in gravels than in sands. Both tests suffer from the lack of a reliable means of determining transferred energy. Further, the use of LPT blow counts is generally limited to calculation of equivalent SPT blow counts using correlation factors measured in sands. Variation of LPT blow counts with grain size is assumed to be negligible. This research shows that safety hammer energies can be reliably estimated from measurements of hammer impact velocity for both SPT and LPT. This approach to determining transferred energy is relatively simple, and avoids the primary limitation of existing methods, which is the inability to calibrate the instrumentation. Transferred energies and hammer impact velocities are collected from various sources. These data are used to determine the ratio between the hammer kinetic energy and the transferred energy (energy transfer ratio, ETR), which is found to follow a roughly Normal distribution for the various hammers represented. An assessment of uncertainty is used to demonstrate that an ETR based approach could be superior to existing energy measurement methods. SPT grain size effects have primarily been characterized as the variation of an empirical relative density correlation factor, (CD)SPT, with mean grain size. In this thesis, equivalent (CD)LPT data are back-calculated from measured SPT-LPT correlation factors (CS/L). Results of a numerical study suggest that SPT and LPT grain size effects should be similar and related to the ratio of the sample size to the mean grain size. Based on this observation, trend-lines with the same shape as the (CD)SPT trend-line are established for the back-calculated (CD)LPT data. A method for generating the grain size effect trend-line for LPT is then proposed. These trend lines provide a rational approach to direct interpretation of LPT data, or to improved prediction of equivalent SPT blow counts.

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International