- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Performance-based earthquake engineering with the first-order...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Performance-based earthquake engineering with the first-order reliability method Koduru, Smitha Devi
Abstract
Performance-based earthquake engineering is an emerging field of study that complements the prescriptive methods that the design codes provide to ensure adequate seismic performance of structures. Accounting for uncertainties in the performance assessments forms an important component in this area. In this context, the present study focuses on two broad themes; first, treatment of uncertainties and the application of the first-order reliability method (FORM) in finite-element reliability analysis, and second, the seismic risk assessment of reinforced concrete structures for performance states such as, collapse and monetary loss. In the first area, the uncertainties arising from inherent randomness (“aleatory uncertainty”) and due to the lack of knowledge (“epistemic uncertainty”) are identified. A framework for the separation of these uncertainties is proposed. Following this, the applicability of FORM to the linear and nonlinear finite-element structural models under static and dynamic loading is investigated. The case studies indicate that FORM is applicable for linear and nonlinear static problems. Strategies are proposed to circumvent and remedy potential challenges to FORM. In the case of dynamic problems, the application of FORM is studied with an emphasis on cumulative response measures. The limit-state surface is shown to have a closed and nonlinear geometric shape. Solution methods are proposed to obtain probability bounds based on the FORM results. In the application-oriented second area of research, at first, the probability of collapse of a reinforced concrete frame is assessed with nonlinear static analysis. By modelling the post-failure behaviour of individual structural members, the global response of the structure is estimated beyond the component failures. The final application is the probabilistic assessment of monetary loss for a high-rise shear wall building due to the seismic hazard in the Cascadia subduction zone. A 3-dimensional finite-element model of the structure with nonlinear material models is subjected to stochastic ground motions in the reliability analysis. The parameters for the stochastic ground motion model are developed for Vancouver, Canada. Monetary losses due to the damage of structural and non-structural components are included.
Item Metadata
Title |
Performance-based earthquake engineering with the first-order reliability method
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2008
|
Description |
Performance-based earthquake engineering is an emerging field of study that complements the prescriptive methods that the design codes provide to ensure adequate seismic performance of structures. Accounting for uncertainties in the performance assessments forms an important component in this area. In this context, the present study focuses on two broad themes; first, treatment of uncertainties and the application of the first-order reliability method (FORM) in finite-element reliability analysis, and second, the seismic risk assessment of reinforced concrete structures for performance states such as, collapse and monetary loss. In the first area, the uncertainties arising from inherent randomness (“aleatory uncertainty”) and due to the lack of knowledge (“epistemic uncertainty”) are identified. A framework for the separation of these uncertainties is proposed. Following this, the applicability of FORM to the linear and nonlinear finite-element structural models under static and dynamic loading is investigated. The case studies indicate that FORM is applicable for linear and nonlinear static problems. Strategies are proposed to circumvent and remedy potential challenges to FORM. In the case of dynamic problems, the application of FORM is studied with an emphasis on cumulative response measures. The limit-state surface is shown to have a closed and nonlinear geometric shape. Solution methods are proposed to obtain probability bounds based on the FORM results. In the application-oriented second area of research, at first, the probability of collapse of a reinforced concrete frame is assessed with nonlinear static analysis. By modelling the post-failure behaviour of individual structural members, the global response of the structure is estimated beyond the component failures. The final application is the probabilistic assessment of monetary loss for a high-rise shear wall building due to the seismic hazard in the Cascadia subduction zone. A 3-dimensional finite-element model of the structure with nonlinear material models is subjected to stochastic ground motions in the reliability analysis. The parameters for the stochastic ground motion model are developed for Vancouver, Canada. Monetary losses due to the damage of structural and non-structural components are included.
|
Extent |
1426836 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2008-06-12
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0063076
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2008-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International