- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Bench-scale two-dimensional fluidized bed hydrodynamics...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Bench-scale two-dimensional fluidized bed hydrodynamics and struvite growth studies Qu, Xiaocao
Abstract
A bench-scale, two-dimensional multi-compartmentalized fluidized reactor was designed and studies of hydrodynamic behavior of fluidization of struvite pellets were performed. Also size growth distribution tests were analyzed qualitatively. The study validated a previously-proposed theory, concerning the relationship between dynamic pressure drop and upflow velocity as well the experimental protocol to determine the minimum fluidization velocity. Findings indicated that the mixture of two-sized particles would behave rather independently of each other, before the bed expansion. It was suggested that bed height measurement could be another promising method to pinpoint minimum fluidization velocity as there is a sharp bed surface "waking episode" during the process of a packed bed being gradually fluidized. Bed expansion equations for the prediction of void fraction as a function of superficial upflow velocity or vice versa, have been established for 4 groups of monosize particles, as well as two mixtures of two-sized particles. The equation constants did not agree well with previously established ones. The two layers of segregated mixture bed had congruent linear relationships between the logarithmic void fraction and logarithmic upflow velocity. It was found that a mixture does not always go through segregation, but only when the size difference is large enough. Size growth distribution tests were performed under different hydrodynamic configurations as well as seeding conditions. Conclusions can be made that a bed with uniformly- distributed particle void fractions and higher mixing energy input (upflow velocity), normally has better performance of struvite growth in size.
Item Metadata
Title |
Bench-scale two-dimensional fluidized bed hydrodynamics and struvite growth studies
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2007
|
Description |
A bench-scale, two-dimensional multi-compartmentalized fluidized reactor was designed and studies of hydrodynamic behavior of fluidization of struvite pellets were performed. Also size growth distribution tests were analyzed qualitatively.
The study validated a previously-proposed theory, concerning the relationship between dynamic pressure drop and upflow velocity as well the experimental protocol to determine the minimum fluidization velocity. Findings indicated that the mixture of two-sized particles would behave rather independently of each other, before the bed expansion. It was suggested that bed height measurement could be another promising method to pinpoint minimum fluidization velocity as there is a sharp bed surface "waking episode" during the process of a packed bed being gradually fluidized.
Bed expansion equations for the prediction of void fraction as a function of superficial upflow velocity or vice versa, have been established for 4 groups of monosize particles, as well as two mixtures of two-sized particles. The equation constants did not agree well with previously established ones. The two layers of segregated mixture bed had congruent linear relationships between the logarithmic void fraction and logarithmic upflow velocity. It was found that a mixture does not always go through segregation, but only when the size difference is large enough.
Size growth distribution tests were performed under different hydrodynamic configurations as well as seeding conditions. Conclusions can be made that a bed with uniformly- distributed particle void fractions and higher mixing energy input (upflow velocity), normally has better performance of struvite growth in size.
|
Extent |
22076575 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2008-02-18
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0063064
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2008-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International