UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Seismic shear demand in reinforced concete cantilever walls Yathon, Jeffrey Scott

Abstract

This thesis addresses the issue of seismic shear force demand in reinforced concrete cantilever walls, and specifically the dynamic amplification of shear force due to higher mode effects. Current design codes either do not account for this phenomenon, or vary considerably in the approach they take. In order to determine the reason for the variation, previous research is first examined, and it is found that the conclusions reached are not consistent with each other. It is identified that a major source of the problem is a lack of a comprehensive analysis of the problem. To attempt to address this issue, the analysis portion of the thesis starts by performing response spectrum analysis on structures with heights ranging from 5 to 70 storeys. It is shown that when a pin is placed at the bottom of the structure to simulate yielding, the moment is limited but the shear can still increase. A simple relationship between the fixed base and pinned base shear is found. Reduction in the shear stiffness, possible yielding higher in the structure, and the effect of the spectrum are also issues examined. The next two chapters deal with both linear and nonlinear time history analyses performed using OpenSees. Linear time history analysis is used to demonstrate the issues with ground motion scaling in tall structures. It is then shown that the shear at the base of the structure from a nonlinear analysis is more than the code predicts, as is the moment higher up in the structure. Furthermore, the shear at the base of the structure remains relatively constant no matter how the rest of the structure yields. A possible model is then proposed which adds the pinned response spectrum analysis results to the reduced shear. This model is compared to the nonlinear results and it is found to agree well. Finally, a chapter is devoted to factors which may complicate the results. They are separated into two sections: choice of hysteretic model, and the influence of the shear capacity on the demand. It is determined that further research is needed in these areas.

Item Media

Item Citations and Data

License

Attribution-NonCommercial-NoDerivatives 4.0 International

Usage Statistics