UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Raman spectroscopic study of induced pluripotent stem cells : characterization, identification, and discrimination Tan, Yan


Raman microspectroscopy is a non-destructive, label-free technique that offers information-rich molecular analysis of living cells. This work is the first reported Raman spectroscopic study of human induced pluripotent cells (hiPSCs), a very promising new source of non-embryonic pluripotent stem cells for drug screening, toxicity assessment, regenerative therapies, and clinical research. The Raman signatures of hiPSCs and human embryonic stem cells (hESCs) were found to be highly similar, and both distinguishable from differentiated hESCs in terms of relative Raman peak intensities and variances. Principal component analysis (PCA) of the Raman spectra demonstrated a clear distinction between hiPSCs and differentiated hESCs. Additionally, the effects of culture confluencies and cell line differences on Raman spectra of hiPS cells was investigated. It was confirmed that the spectral similarity between hiPSCs and hESCs, along with the dissimilarity between hiPSCs and differentiated hESCs were qualitatively consistent over various cell culture confluencies, and between the two available hiPS cell lines. Therefore, the results suggested that the overall cellular composition of hiPSC was more similar to that of the hESC that these cells were designed to resemble than the somatics cell from which they were derived. It is suggested that the observed spectral differences between hiPSC and hESC may be due to factors relating to reprogramming (rather than cell density difference or cell line artifacts). Attempts were also made to investigate how Raman features of hiPS cells change during their differentiation. The pluripotent and differentiated iPSCs exhibited significantly different Raman spectral profiles; these differences were qualitatively similar to, but less marked, than differences between pluripotent and differentiated hESC. Overall, this work contributed important new data and practical insights into the utility of Raman microspectroscopy for characterization, identification, and discrimination of iPSCs and hESCs.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International