- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Reactivity of rhodium-heteroatom bonds: from catalytic...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Reactivity of rhodium-heteroatom bonds: from catalytic bond activation to new strategies for olefin functionalization van Rooy, Sara Emily
Abstract
Rhodium complexes bearing multidentate nitrogen donor ligands were investigated for their ability to promote alkyne and olefin functionalization reactions. This thesis work is comprised of two projects in which rhodium-heteroatom reactivity is investigated: P-H bond activation reactions and olefin functionalizations via rhodaoxetane intermediates. [Tp*Rh(PPh3)2] [Tp* = hydrotris(3,5-dimethylpyrazolyl)borate] and [Tp*Rh(cod)]2 (cod = cyclooctadiene) were evaluated for their activity in alkyne hydrophosphinylation in comparison to known catalysts for this reaction. [Tp*Rh(PPh3)2]and [Tp*Rh(cod)]2 were both shown to effect hydrophosphinylation of 1-octyne with diphenylphosphine oxide with high regioselectivity but moderate yields in comparison with Wilkinson's catalyst [C1Rh(PPh3)3]. [Tp*Rh(PPh3)2] was further shown to effect hydrophosphinylation of a range of aromatic and aliphatic alkynes with diphenylphosphine oxide, in each case exclusively providing the E-linear vinylphosphineoxide product. 1H and 31P NMR spectroscopy provided evidence that alkyne hydrophosphinylation in the presence of pyrazolylborate rhodium complexes follows an analogous mechanism to that proposed for this reaction catalyzed by [C1Rh(PPh3)3] or[C1Rh(cod)]2. The 2-rhodaoxetane [(TPA)Rhmec2_,-4u, 0-2-oxyethypr BPh4- (TPA = tris[(2-pyridal)methyl]amine) was investigated for its potential as an intermediate in proposed functionalization reactions of olefins. RTPA)Rh111(K2-C,0-2-oxyethyl)]+ BPh4- was prepared by two published methods with limited success. A third method involved the use of nitrous oxide to oxygenate [(12-ethene)(K4-TPA)Rh1]+ to RTPA)Rh1110(-2-C,0-2-oxyethyDr. Only a trace amount of [(TPA)Rhmoc2 -C,0-2-oxyethypr was observed in the 1I-1 NMR spectrum of this reaction mixture. Initial test reactions of [(TPA)Rhilioc2_C,0-2-oxyethypr combined with substrates (aniline, toluenesulfonamide, phenylboronic acid, or benzaldehyde) were inconclusive since the results were obscured by the impurity of the samples.
Item Metadata
Title |
Reactivity of rhodium-heteroatom bonds: from catalytic bond activation to new strategies for olefin functionalization
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2007
|
Description |
Rhodium complexes bearing multidentate nitrogen donor ligands were investigated for their ability to promote alkyne and olefin functionalization reactions. This thesis work is comprised of two projects in which rhodium-heteroatom reactivity is investigated: P-H bond activation reactions and olefin functionalizations via rhodaoxetane intermediates.
[Tp*Rh(PPh3)2] [Tp* = hydrotris(3,5-dimethylpyrazolyl)borate] and
[Tp*Rh(cod)]2 (cod = cyclooctadiene) were evaluated for their activity in alkyne hydrophosphinylation in comparison to known catalysts for this reaction. [Tp*Rh(PPh3)2]and [Tp*Rh(cod)]2 were both shown to effect hydrophosphinylation of 1-octyne with diphenylphosphine oxide with high regioselectivity but moderate yields in comparison with Wilkinson's catalyst [C1Rh(PPh3)3]. [Tp*Rh(PPh3)2] was further shown to effect hydrophosphinylation of a range of aromatic and aliphatic alkynes with diphenylphosphine oxide, in each case exclusively providing the E-linear vinylphosphineoxide product. 1H and 31P NMR spectroscopy provided evidence that alkyne hydrophosphinylation in the presence of pyrazolylborate rhodium complexes follows an analogous mechanism to that proposed for this reaction catalyzed by [C1Rh(PPh3)3] or[C1Rh(cod)]2.
The 2-rhodaoxetane [(TPA)Rhmec2_,-4u, 0-2-oxyethypr BPh4- (TPA = tris[(2-pyridal)methyl]amine) was investigated for its potential as an intermediate in proposed functionalization reactions of olefins. RTPA)Rh111(K2-C,0-2-oxyethyl)]+ BPh4- was prepared by two published methods with limited success. A third method involved the use of nitrous oxide to oxygenate [(12-ethene)(K4-TPA)Rh1]+ to RTPA)Rh1110(-2-C,0-2-oxyethyDr. Only a trace amount of [(TPA)Rhmoc2 -C,0-2-oxyethypr was observed in the 1I-1 NMR spectrum of this reaction mixture. Initial test reactions of [(TPA)Rhilioc2_C,0-2-oxyethypr combined with substrates (aniline, toluenesulfonamide, phenylboronic acid, or benzaldehyde) were inconclusive since the results were obscured by the impurity of the samples.
|
Extent |
4744901 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2008-02-22
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0061816
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2008-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International