UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Simulations of interfacial dynamics of complex fluids using diffuse interface method with adaptive meshing Zhou, Chunfeng

Abstract

A diffuse-interface finite-element method has been applied to simulate the flow of two-component rheologically complex fluids. It treats the interfaces as having a finite thickness with a phase-field parameter varying continuously from one phase to the other. Adaptive meshing is applied to produce fine grid near the interface and coarse mesh in the bulk. It leads to accurate resolution of the interface at modest computational costs. An advantage of this method is that topological changes such as interfacial rupture and coalescence happen naturally under a short-range force resembling the van der Waals force. There is no need for manual intervention as in sharp-interface model to effect such event. Moreover, this energy-based formulation easily incorporates complex rheology as long as the free energy of the microstructures is known. The complex fluids considered in this thesis include viscoelastic fluids and nematic liquid crystals. Viscoelasticity is represented by the Oldroyd-B model, derived for a dilute polymer solution as linear elastic dumbbells suspended in a Newtonian solvent. The Leslie-Ericksen model is used for nematic liquid crystals,which features distortional elasticity and viscous anisotropy. The interfacial dynamics of such complex fluids are of both scientific and practical significance. The thesis describes seven computational studies of physically interesting problems. The numerical simulations of monodisperse drop formation in microfluidic devices have reproduced scenarios of jet breakup and drop formation observed in experiments. Parametric studies have shown dripping and jetting regimes for increasing flow rates, and elucidated the effects of flow and rheological parameters on the drop formation process and the final drop size. A simple liquid drop model is used to study the neutrophil, the most common type of white blood cell, transit in pulmonary capillaries. The cell size, viscosity and rheological properties are found to determine the transit time. A compound drop model is also employed to account for the cell nucleus. The other four cases concern drop and bubble dynamics in nematic liquid crystals, as determined by the coupling among interfacial anchoring, bulk elasticity and anisotropic viscosity. In particular, the simulations reproduce unusual bubble shapes seen in experiments, and predict self-assembly of microdroplets in nematic media.

Item Media

Item Citations and Data

License

Attribution-NonCommercial-NoDerivatives 4.0 International

Usage Statistics