- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- The mineralogical, geochemical and isotope characteristics...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
The mineralogical, geochemical and isotope characteristics of alteration, mineralization and metamorphism of the Red Lake Gold Mines, Ontario Stock, Elizabeth Denise
Abstract
Archean lode-gold deposits are a significant source of gold. However, exploration of this deposit type is hindered by their poorly understood genetic models and geochemical features. This project investigated the geochemical expression surrounding the Archean lode-gold Red Lake Gold Mines (RLGM) in the Superior Province, Canada. Mineral chemistry, whole rock and isotope geochemistry were used to establish how hydrothermal and metamorphic events influenced ore genesis. The RLGM is a basalt-hosted lode-gold deposit that formed from multiple superposed hydrothermal and metamorphic events. This study defined three significant superposed events which were important for gold mineralization. The first event was a widespread hybridized seafloor-magmatic event which caused reduction with FeO, MnO, K2O, SO3, SiO2, Rb, As and Cu enrichment. Seawater interaction created abundant micas-clays-chlorite-carbonate-FeMn oxides. Localized acidic magmatic fluids, in syn-volcanic faults, caused advanced argillic alteration. Subsequent peak-regional metamorphism created a widespread (>7km) occurrence of metamorphosed altered basalts. The micas-clays-chlorite-carbonate-FeMn oxides were metamorphosed to form Fe-biotite-Ti-magnetite±carbonate and Fe-chlorite-Fe-amphibole-FeMn-garnet-epidote/clinozoisite-magnetite-calcite-biotite assemblages. The metamorphosed argillic alteration created a quartz-muscovite-andalusite assemblage. Overprinting the widespread metamorphosed altered basalt was the significantly narrower (
Item Metadata
Title |
The mineralogical, geochemical and isotope characteristics of alteration, mineralization and metamorphism of the Red Lake Gold Mines, Ontario
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2012
|
Description |
Archean lode-gold deposits are a significant source of gold. However, exploration of this deposit type is hindered by their poorly understood genetic models and geochemical features. This project investigated the geochemical expression surrounding the Archean lode-gold Red Lake Gold Mines (RLGM) in the Superior Province, Canada. Mineral chemistry, whole rock and isotope geochemistry were used to establish how hydrothermal and metamorphic events influenced ore genesis.
The RLGM is a basalt-hosted lode-gold deposit that formed from multiple superposed hydrothermal and metamorphic events. This study defined three significant superposed events which were important for gold mineralization. The first event was a widespread hybridized seafloor-magmatic event which caused reduction with FeO, MnO, K2O, SO3, SiO2, Rb, As and Cu enrichment. Seawater interaction created abundant micas-clays-chlorite-carbonate-FeMn oxides. Localized acidic magmatic fluids, in syn-volcanic faults, caused advanced argillic alteration. Subsequent peak-regional metamorphism created a widespread (>7km) occurrence of metamorphosed altered basalts. The micas-clays-chlorite-carbonate-FeMn oxides were metamorphosed to form Fe-biotite-Ti-magnetite±carbonate and Fe-chlorite-Fe-amphibole-FeMn-garnet-epidote/clinozoisite-magnetite-calcite-biotite assemblages. The metamorphosed argillic alteration created a quartz-muscovite-andalusite assemblage.
Overprinting the widespread metamorphosed altered basalt was the significantly narrower (
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2012-09-28
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NoDerivs 3.0 Unported
|
DOI |
10.14288/1.0053556
|
URI | |
Degree (Theses) | |
Program (Theses) | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2012-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NoDerivs 3.0 Unported