UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Sr-Nd-Hf-Pb isotope and trace element geochemistry of the Natkusiak Formation continental flood basalts of the Neoproterozoic Franklin large igneous province, Victoria Island, Canada Dell'Oro, Trent Arthur


The Neoproterozoic (ca. 723 Ma) Franklin large igneous province (LIP) located on Victoria Island, Arctic Canada, consists of the Natkusiak Formation continental flood basalts and a sill-dominated feeder system exposed in the Minto Inlier. The Franklin LIP is temporally linked with the breakup of Laurentia from Siberia and the Sturtian glaciation or “Snowball Earth”. Recent mapping shows that the Natkusiak Formation, preserved in two lobes (northern and southern), has a thin basal unit, ~50 m thick, followed by two ~500 m thick cycles (1 and 2) of basaltic sheet-flows. Sr-Nd-Pb-Hf isotopic compositions, major element oxides, and trace element concentrations of the Natkusiak basalts allow for the characterization of mantle source components and the extent of crustal contamination. Four geochemical groups (southern low- and high-Ti basalts; northern low- and high-Ti basalts) are defined. The basal basalts (low-Ti, 1.0-1.2 wt.% TiO₂) are distinguished from the overlying cycle 1 and 2 basalts (high-Ti, 1.2-1.8 wt.% TiO₂). The high-Ti basalts are characterized by a narrow range in ⁸⁷Sr/⁸⁶Sri (0.7027-0.7045), high εNdi and εHfi, and relatively low ²⁰⁶Pb/²⁰⁴Pbi, ²⁰⁷Pb/²⁰⁴Pbi, and ²⁰⁸Pb/²⁰⁴Pbi compared to the low-Ti basalts (⁸⁷Sr/⁸⁶Sri = 0.7033-0.7057). The northern (low- and high-Ti) basalts are isotopically distinct from the southern (low- and high-Ti) basalts with lower εNdi values for a given ⁸⁷Sr/⁸⁶Sri. The chemistry of the coeval Franklin intrusions mainly overlaps that of the northern basalts and they show only limited isotopic correlation with the southern basalts, which indicates that the southern basalts were fed from a separate feeder system. Significant major and trace element and isotopic differences between the low- and high-Ti basalts are inconsistent with the effects of crustal contamination and are related to different mantle source compositions, with a garnet-bearing source for the low-Ti basalts and a spinel-bearing source for the high-Ti basalts. A shift in mantle source region, likely reflected by an episode of syn-volcanic extension, occurred after the emplacement of the low-Ti basalts, which represent the earliest volcanic products of the Franklin LIP. 

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International