- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Estimation of surface-free data by curvelet-domain...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Estimation of surface-free data by curvelet-domain matched filtering and sparse inversion AlMatar, Mufeed H.
Abstract
A recent robust multiple-elimination technique, based on the underlying principle that relates primary impulse response to total upgoing wavefield, tries to change the paradigm that sees surface-related multiples as noise that needs to be removed from the data prior to imaging. This technique, estimation of primaries by sparse inversion (EPSI), (van Groenestijn and Verschuur, 2009; Lin and Herrmann, 2009), proposes an inversion procedure during which the source function and surface-free impulse response are directly calculated from the upgoing wavefield using an alternating optimization procedure. EPSI hinges on a delicate interplay between surface-related multiples and pri- maries. Finite aperture and other imperfections may violate this relationship. In this thesis, we investigate how to make EPSI more robust by incorporating curvelet- domain matching in its formulation. Compared to surface-related multiple removal (SRME), where curvelet-domain matching was used successfully, incorporating this step has the additional advantage that matches multiples to multiples rather than predicated multiples to total data as in SRME.
Item Metadata
Title |
Estimation of surface-free data by curvelet-domain matched filtering and sparse inversion
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2011
|
Description |
A recent robust multiple-elimination technique, based on the underlying principle that relates primary impulse response to total upgoing wavefield, tries to change the paradigm that sees surface-related multiples as noise that needs to be removed from the data prior to imaging. This technique, estimation of primaries by sparse inversion (EPSI), (van Groenestijn and Verschuur, 2009; Lin and Herrmann, 2009), proposes an inversion procedure during which the source function and surface-free impulse response are directly calculated from the upgoing wavefield using an alternating optimization procedure.
EPSI hinges on a delicate interplay between surface-related multiples and pri- maries. Finite aperture and other imperfections may violate this relationship. In this thesis, we investigate how to make EPSI more robust by incorporating curvelet- domain matching in its formulation. Compared to surface-related multiple removal (SRME), where curvelet-domain matching was used successfully, incorporating this step has the additional advantage that matches multiples to multiples rather than predicated multiples to total data as in SRME.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-05-09
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution 3.0 Unported
|
DOI |
10.14288/1.0053426
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2011-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution 3.0 Unported