- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Seismic and mechanical attributes of lithospheric deformation...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Seismic and mechanical attributes of lithospheric deformation and subduction in western Canada Audet, Pascal
Abstract
Convergent continental margins are regions of intense deformation caused by the interaction of oceanic plates with continents. The spatial extent of deformation is broadly commensurate with the specific time scale of the causative phenomenon. For example, subduction-related short-term deformation is limited to <200 km from the margin, whereas long-term plate convergence cause deformation over ∼1000 km landward. Deformation is thus manifested in multiple ways, with attributes depending on the scale of measurement. In this thesis we investigate the use of two geophysical approaches in the study of deformation: 1) The analysis of potential-field anomalies to derive estimates of the elastic thickness (Te) of the lithosphere, and 2) The structural study of past and present subduction systems using seismic observations and modelling. Both approaches involve the development of appropriate methodologies for data analysis and modelling, and their application to the western Canadian landmass. Our findings are summarized as follows: 1) We develop a wavelet-based technique to map variations in Te and its anisotropy; 2) We show how a step-wise transition in Te and its anisotropy from the Cordillera to the Craton is a major factor influencing lithospheric deformation; 3) We implement a waveform modelling tool that includes the effects of structural heterogeneity and anisotropy for teleseismic applications, and use it to model the signature of a fossil subduction zone in a Paleoproterozoic terrane; 4) We use teleseismic recordings to map slab edge morphology in northern Cascadia and show how slab window tectonism and slab stretching led to the creation of the oceanic Explorer plate; 5) We use seismic signals from the subducting oceanic crust to calculate elevated Poisson’s ratio and infer high pore-fluid pressures and a low-permeability plate boundary within the forearc region of northern Cascadia.
Item Metadata
Title |
Seismic and mechanical attributes of lithospheric deformation and subduction in western Canada
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2008
|
Description |
Convergent continental margins are regions of intense deformation caused by the interaction of oceanic plates with continents. The spatial extent of deformation is broadly commensurate with the specific time scale of the causative phenomenon. For example, subduction-related short-term deformation is limited to <200 km from the margin, whereas long-term plate convergence cause deformation over ∼1000 km landward. Deformation is thus manifested in multiple ways, with attributes depending on the scale of measurement. In this thesis we investigate the use of two geophysical approaches in the study of deformation: 1) The analysis of potential-field anomalies to derive estimates of the elastic thickness (Te) of the lithosphere, and 2) The structural study of past and present subduction systems using seismic observations and modelling. Both approaches involve the development of appropriate methodologies for data analysis and modelling, and their application to the western Canadian landmass. Our findings are summarized as follows: 1) We develop a wavelet-based technique to map variations in Te and its anisotropy; 2) We show how a step-wise transition in Te and its anisotropy from the Cordillera to the Craton is a major factor influencing lithospheric deformation; 3) We implement a waveform modelling tool that includes the effects of structural heterogeneity and anisotropy for teleseismic applications, and use it to model the signature of a fossil subduction zone in a Paleoproterozoic terrane; 4) We use teleseismic recordings to map slab edge morphology in northern Cascadia and show how slab window tectonism and slab stretching led to the creation of the oceanic Explorer plate; 5) We use seismic signals from the subducting oceanic crust to calculate elevated Poisson’s ratio and infer high pore-fluid pressures and a low-permeability plate boundary within the forearc region of northern Cascadia.
|
Extent |
6481632 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2008-10-02
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0052387
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2008-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International