- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Regret bounds for Gaussian process bandits without...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Regret bounds for Gaussian process bandits without observation noise Zoghi, Masrour
Abstract
This thesis presents some statistical refinements of the bandits approach presented in [11] in the situation where there is no observation noise. We give an improved bound on the cumulative regret of the samples chosen by an algorithm that is related (though not identical) to the UCB algorithm of [11] in a complementary setting. Given a function f on a domain D ⊆ R^d , sampled from a Gaussian process with an anisotropic kernel that is four times differentiable at 0, and a lattice L ⊆ D, we show that if the points in L are chosen for sampling using our branch-and-bound algorithm, the regret asymptotically decreases according to O(e^{τt/(ln t)^{d/4}}) with high probability, where t is the number of observations carried out so far and τ is a constant that depends on the objective function.
Item Metadata
Title |
Regret bounds for Gaussian process bandits without observation noise
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2012
|
Description |
This thesis presents some statistical refinements of the bandits approach presented in [11] in the situation where there is no observation noise. We give an improved bound on the cumulative regret of the samples chosen by an algorithm that is related (though not identical) to the UCB algorithm of [11] in a complementary setting. Given a function f on a domain D ⊆ R^d , sampled from a Gaussian process with an anisotropic kernel that is four times differentiable at 0, and a lattice L ⊆ D, we show that if the points in L are chosen for sampling using our branch-and-bound algorithm, the regret asymptotically decreases according to O(e^{τt/(ln t)^{d/4}}) with high probability,
where t is the number of observations carried out so far and τ is a constant that depends on the objective function.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2012-08-02
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-ShareAlike 3.0 Unported
|
DOI |
10.14288/1.0052133
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2012-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-ShareAlike 3.0 Unported