UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Elevating search results from flat lists to structured expansions Liang, Xueyao

Abstract

Keyword based search interfaces are extremely popular as a means for efficiently discovering items of interest from a huge collection, as evidenced by the success of search engines like Google and Bing. However, most of the current search services still return results as a flat ranked list of items. Considering the huge number of items which can match a query, this list based interface can be very difficult for the user to explore and find important items relevant to their search needs. In this work, we consider a search scenario in which each item is annotated with a set of keywords. E.g., in Web 2.0 enabled systems such as flickr and del.icio.us, it is common for users to tag items with keywords. Based on this annotation information, we can automatically group query result items into different expansions of the query corresponding to subsets of keywords. We formulate and motivate this problem within a top-k query processing framework, but as that of finding the top-k most important expansions. Then we study additional desirable properties for the set of expansions returned, and formulate the problem as an optimization problem of finding the best k expansions satisfying all the desirable properties. We propose several efficient algorithms for this problem. Our problem is similar in spirit to recent works on automatic facets generation, but has the important difference and advantage that we don’t need to assume the existence of pre-defined categorical hierarchy which is critical for these works. Through extensive experiments on both real and synthetic datasets, we show our proposed algorithms are both effective and efficient.

Item Media

Item Citations and Data

License

Attribution-NonCommercial-NoDerivatives 4.0 International

Usage Statistics