UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Dijkstra-like ordered upwind methods for solving static Hamilton-Jacobi equations Alton, Ken


The solution of a static Hamilton-Jacobi Partial Differential Equation (HJ PDE) can be used to determine the change of shape in a surface for etching/deposition/lithography applications, to provide the first-arrival time of a wavefront emanating from a source for seismic applications, or to compute the minimal-time trajectory of a robot trying to reach a goal. HJ PDEs are nonlinear so theory and methods for solving linear PDEs do not directly apply. An efficient way to approximate the solution is to emulate the causal property of this class of HJ PDE: the solution at a particular point only depends on values backwards along the characteristic that passes through that point and solution values always increase along characteristics. In our discretization of the HJ PDE we enforce an analogous causal property, that the solution value at a grid node may only depend on the values of nodes in its numerical stencil which are smaller. This causal property is related but not the same thing as an upwinding property of schemes for time dependent problems. The solution to such a discretized system of equations can be efficiently computed using a Dijkstra-like method in a single pass through the grid nodes in order of nondecreasing value. We develop two Dijkstra-like methods for solving two subclasses of static HJ PDEs. The first method is an extension of the Fast Marching Method for isotropic Eikonal equations and it can be used to solve a class of axis-aligned anisotropic HJ PDEs on an orthogonal grid. The second method solves general convex static HJ PDEs on simplicial grids by computing stencils for a causal discretization in an initial pass through the grid nodes, and then solving the discretization in a second Dijkstra-like pass through the nodes. This method is suitable for computing solutions on highly nonuniform grids, which may be useful for extending it to an error-control method based on adaptive grid refinement.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International