- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Multilevel multidimensional scaling on the GPU
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Multilevel multidimensional scaling on the GPU Ingram, Stephen F.
Abstract
We present Glimmer, a new multilevel visualization algorithm for multidimensional scaling designed to exploit modern graphics processing unit (GPU) hard-ware. We also present GPU-SF, a parallel, force-based subsystem used by Glimmer. Glimmer organizes input into a hierarchy of levels and recursively applies GPU-SF to combine and refine the levels. The multilevel nature of the algorithm helps avoid local minima while the GPU parallelism improves speed of computation. We propose a robust termination condition for GPU-SF based on a filtered approximation of the normalized stress function. We demonstrate the benefits of Glimmer in terms of speed, normalized stress, and visual quality against several previous algorithms for a range of synthetic and real benchmark datasets. We show that the performance of Glimmer on GPUs is substantially faster than a CPU implementation of the same algorithm. We also propose a novel texture paging strategy called distance paging for working with precomputed distance matrices too large to fit in texture memory.
Item Metadata
| Title |
Multilevel multidimensional scaling on the GPU
|
| Creator | |
| Publisher |
University of British Columbia
|
| Date Issued |
2007
|
| Description |
We present Glimmer, a new multilevel visualization algorithm for multidimensional scaling designed to exploit modern graphics processing unit (GPU) hard-ware. We also present GPU-SF, a parallel, force-based subsystem used by Glimmer. Glimmer organizes input into a hierarchy of levels and recursively applies GPU-SF to combine and refine the levels. The multilevel nature of the algorithm helps avoid local minima while the GPU parallelism improves speed of computation. We propose a robust termination condition for GPU-SF based on a filtered approximation of the normalized stress function. We demonstrate the benefits of Glimmer in terms of speed, normalized stress, and visual quality against several previous algorithms for a range of synthetic and real benchmark datasets. We show that the performance of Glimmer on GPUs is substantially faster than a CPU implementation of the same algorithm. We also propose a novel texture paging strategy called distance paging for working with precomputed distance matrices too large to fit in texture memory.
|
| Extent |
12987580 bytes
|
| Genre | |
| Type | |
| File Format |
application/pdf
|
| Language |
eng
|
| Date Available |
2008-02-20
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0051260
|
| URI | |
| Degree (Theses) | |
| Program (Theses) | |
| Affiliation | |
| Degree Grantor |
University of British Columbia
|
| Graduation Date |
2008-05
|
| Campus | |
| Scholarly Level |
Graduate
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International