- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Implementation of Modular Depot Concept for Switchgrass...
Open Collections
UBC Faculty Research and Publications
Implementation of Modular Depot Concept for Switchgrass Pellet Production in the Piedmont Resop, Jonathan P.; Cundiff, John S.; Sokhansanj, Shahabaddine
Abstract
In the bioenergy industry, highway hauling cost is typically 30%, or more, of the average cost of feedstock delivered to a biorefinery. Thus, truck productivity, in terms of Mg/d/truck, is a key issue in the design of a logistics system. One possible solution to this problem that is being explored is the utilization of modular pellet depots. In such a logistics system, raw biomass (i.e., low-bulk-density product) is converted into pellets (i.e., high-bulk-density product) by several smaller-scale modular pellet depots instead of by a single larger-capacity pellet depot. A truckload of raw biomass (e.g., round bales) is 16 Mg and a load of pellets is 34 Mg. The distribution of depots across a feedstock production area can potentially have an impact on the total truck operating hours (i.e., raw biomass hauling to a depot + pellet hauling from the depot to the biorefinery) required to deliver feedstock for annual operation of a biorefinery. This study examined three different distributions of depots across five feedstock production areas. The numbers of depots were one, two, and four per production area for totals of five, ten, and twenty depots. Increasing the number of depots from five to ten reduced raw biomass hauling hours by 12%, and increasing from five to twenty reduced these hours by 30%. Total hauling hours (raw biomass + pellets) were reduced by less than 1% with an increase from five to ten and by about 11% with an increase from five to twenty. The modular pellet depot concept demonstrated potential for providing improvements to biorefinery logistics systems, but more research is needed to optimize this balance.
Item Metadata
Title |
Implementation of Modular Depot Concept for Switchgrass Pellet Production in the Piedmont
|
Creator | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2025-06-12
|
Description |
In the bioenergy industry, highway hauling cost is typically 30%, or more, of the average cost of feedstock delivered to a biorefinery. Thus, truck productivity, in terms of Mg/d/truck, is a key issue in the design of a logistics system. One possible solution to this problem that is being explored is the utilization of modular pellet depots. In such a logistics system, raw biomass (i.e., low-bulk-density product) is converted into pellets (i.e., high-bulk-density product) by several smaller-scale modular pellet depots instead of by a single larger-capacity pellet depot. A truckload of raw biomass (e.g., round bales) is 16 Mg and a load of pellets is 34 Mg. The distribution of depots across a feedstock production area can potentially have an impact on the total truck operating hours (i.e., raw biomass hauling to a depot + pellet hauling from the depot to the biorefinery) required to deliver feedstock for annual operation of a biorefinery. This study examined three different distributions of depots across five feedstock production areas. The numbers of depots were one, two, and four per production area for totals of five, ten, and twenty depots. Increasing the number of depots from five to ten reduced raw biomass hauling hours by 12%, and increasing from five to twenty reduced these hours by 30%. Total hauling hours (raw biomass + pellets) were reduced by less than 1% with an increase from five to ten and by about 11% with an increase from five to twenty. The modular pellet depot concept demonstrated potential for providing improvements to biorefinery logistics systems, but more research is needed to optimize this balance.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2025-07-14
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0449378
|
URI | |
Affiliation | |
Citation |
AgriEngineering 7 (6): 188 (2025)
|
Publisher DOI |
10.3390/agriengineering7060188
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty; Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0