- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Assessment of Photogrammetric Performance Test on Large...
Open Collections
UBC Faculty Research and Publications
Assessment of Photogrammetric Performance Test on Large Areas by Using a Rolling Shutter Camera Equipped in a Multi-Rotor UAV Arévalo-Verjel, Alba Nely; Lerma, José Luis; Carbonell-Rivera, Juan Pedro; Prieto, Juan F.; Fernández, José
Abstract
The generation of digital aerial photogrammetry products using unmanned aerial vehicle-digital aerial photogrammetry (UAV-DAP) has become an essential task due to the increasing use of UAVs in the world of geomatics, thanks to their low cost and spatial resolution. Therefore, it is relevant to explore the performance of new digital cameras equipped in UAVs using electronic rolling shutters instead of ideal mechanical or global shutter cameras to achieve accurate and reliable photogrammetric products, if possible, while minimizing workload, especially for their application in projects that require a high level of detail. In this paper, we analyse performance using oblique images along the perimeter (3D perimeter) on a flat area, i.e., with slopes of less than 3%. The area was photogrammetrically surveyed with a DJI (Dà-Jiāng Innovations) Inspire 2 multirotor UAV equipped with a Zenmuse X5S rolling shutter camera. The photogrammetric survey was accompanied by a Global Navigation Satellite System (GNSS) survey, in which dual frequency receivers were used to determine the ground control points (GCPs) and checkpoints (CPs). The study analysed different scenarios, including the combination of forward and transversal strips and oblique images. After examining the ideal scenario with the least root mean square error (RMSE), six different combinations were analysed to find the best location for the GCPs. The most significant results indicate that the optimal calibration of the camera is obtained in scenarios including oblique images, which outperform the rest of the scenarios for achieving the lowest RMSE (2.5x the GSD in Z and 3.0x the GSD in XYZ) with optimum GCPs layout; with non-ideal GCPs layout, unacceptable errors can be achieved (11.4x the GSD in XYZ), even with ideal block geometry. The UAV-DAP rolling shutter effect can only be minimised in the scenario that uses oblique images and GCPs at the edges of the overlapping zones and the perimeter.
Item Metadata
Title |
Assessment of Photogrammetric Performance Test on Large Areas by Using a Rolling Shutter Camera Equipped in a Multi-Rotor UAV
|
Creator | |
Contributor | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2025-05-01
|
Description |
The generation of digital aerial photogrammetry products using unmanned aerial vehicle-digital aerial photogrammetry (UAV-DAP) has become an essential task due to the increasing use of UAVs in the world of geomatics, thanks to their low cost and spatial resolution. Therefore, it is relevant to explore the performance of new digital cameras equipped in UAVs using electronic rolling shutters instead of ideal mechanical or global shutter cameras to achieve accurate and reliable photogrammetric products, if possible, while minimizing workload, especially for their application in projects that require a high level of detail. In this paper, we analyse performance using oblique images along the perimeter (3D perimeter) on a flat area, i.e., with slopes of less than 3%. The area was photogrammetrically surveyed with a DJI (Dà-Jiāng Innovations) Inspire 2 multirotor UAV equipped with a Zenmuse X5S rolling shutter camera. The photogrammetric survey was accompanied by a Global Navigation Satellite System (GNSS) survey, in which dual frequency receivers were used to determine the ground control points (GCPs) and checkpoints (CPs). The study analysed different scenarios, including the combination of forward and transversal strips and oblique images. After examining the ideal scenario with the least root mean square error (RMSE), six different combinations were analysed to find the best location for the GCPs. The most significant results indicate that the optimal calibration of the camera is obtained in scenarios including oblique images, which outperform the rest of the scenarios for achieving the lowest RMSE (2.5x the GSD in Z and 3.0x the GSD in XYZ) with optimum GCPs layout; with non-ideal GCPs layout, unacceptable errors can be achieved (11.4x the GSD in XYZ), even with ideal block geometry. The UAV-DAP rolling shutter effect can only be minimised in the scenario that uses oblique images and GCPs at the edges of the overlapping zones and the perimeter.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2025-05-16
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0448910
|
URI | |
Affiliation | |
Citation |
Applied Sciences 15 (9): 5035 (2025)
|
Publisher DOI |
10.3390/app15095035
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty; Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0