- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Spatiotemporal Patterns and Interconnections of Forest...
Open Collections
UBC Faculty Research and Publications
Spatiotemporal Patterns and Interconnections of Forest Biomass and Economic Density in the Yellow River Basin, China Hu, Yaopeng; Zhai, Jiahui; Wu, Qingjun; Yang, Xuanqin; Dou, Yaquan; Zhao, Xiaodi
Abstract
Forests are among the most diverse ecosystems on the planet, and their biomass serves as a key measure for assessing the biological productivity and carbon cycle of terrestrial forest ecosystems. Recognizing the factors that impact forest ecosystems is essential for assessing their health and developing effective conservation strategies to preserve species diversity and ecological equilibrium. This study considered forest biomass as the explained variable, economic density as the explanatory variable, and human activities, land use, and forestland protection as the control variables. Panel data encompassing 448 counties within the Yellow River Basin (YRB) for the years 2008, 2013, and 2018 were utilized as inputs for ArcGIS spatial analysis and two-way fixed-effects modeling. This approach aimed to evaluate the impact of socio-economic factors on forest biomass. The findings indicate that, (1) from both temporal and spatial viewpoints, the distribution of forest biomass in the upper reaches of the Yellow River demonstrated an improvement over the period from 2008 to 2018. Notably, in 2013, there was a significant reduction in the forest biomass distribution in the middle and lower sections, although the levels remained substantially above the average for those regions. Throughout the period from 2008 to 2018, the overall forest biomass within the YRB displayed a spatial distribution pattern, with elevated levels observed in the western areas and diminished levels in the eastern regions. (2) A one-unit increase in economic density led to a 1.002% increase in forest biomass. In the YRB, a positive correlation was observed between the economic density and forest biomass, especially in the middle and lower reaches of the river. (3) In the upstream region, forest biomass was strongly negatively correlated with cultivated land but significantly positively correlated with forest land protection. In the middle reaches, although population growth and arable land expansion led to a decrease in forest biomass, primary industry development and urbanization promoted forest biomass growth. The development of primary industries other than planting, such as the forestry industry, can contribute to the forest biomass. Moreover, in the downstream area, a strong negative correlation was observed between the number of permanent residents and forest biomass. We recommend modifications to human activities to enhance the forest biomass and the preserve forest ecosystem stability.
Item Metadata
Title |
Spatiotemporal Patterns and Interconnections of Forest Biomass and Economic Density in the Yellow River Basin, China
|
Creator | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2025-02-17
|
Description |
Forests are among the most diverse ecosystems on the planet, and their biomass serves as a key measure for assessing the biological productivity and carbon cycle of terrestrial forest ecosystems. Recognizing the factors that impact forest ecosystems is essential for assessing their health and developing effective conservation strategies to preserve species diversity and ecological equilibrium. This study considered forest biomass as the explained variable, economic density as the explanatory variable, and human activities, land use, and forestland protection as the control variables. Panel data encompassing 448 counties within the Yellow River Basin (YRB) for the years 2008, 2013, and 2018 were utilized as inputs for ArcGIS spatial analysis and two-way fixed-effects modeling. This approach aimed to evaluate the impact of socio-economic factors on forest biomass. The findings indicate that, (1) from both temporal and spatial viewpoints, the distribution of forest biomass in the upper reaches of the Yellow River demonstrated an improvement over the period from 2008 to 2018. Notably, in 2013, there was a significant reduction in the forest biomass distribution in the middle and lower sections, although the levels remained substantially above the average for those regions. Throughout the period from 2008 to 2018, the overall forest biomass within the YRB displayed a spatial distribution pattern, with elevated levels observed in the western areas and diminished levels in the eastern regions. (2) A one-unit increase in economic density led to a 1.002% increase in forest biomass. In the YRB, a positive correlation was observed between the economic density and forest biomass, especially in the middle and lower reaches of the river. (3) In the upstream region, forest biomass was strongly negatively correlated with cultivated land but significantly positively correlated with forest land protection. In the middle reaches, although population growth and arable land expansion led to a decrease in forest biomass, primary industry development and urbanization promoted forest biomass growth. The development of primary industries other than planting, such as the forestry industry, can contribute to the forest biomass. Moreover, in the downstream area, a strong negative correlation was observed between the number of permanent residents and forest biomass. We recommend modifications to human activities to enhance the forest biomass and the preserve forest ecosystem stability.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2025-04-14
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0448396
|
URI | |
Affiliation | |
Citation |
Forests 16 (2): 358 (2025)
|
Publisher DOI |
10.3390/f16020358
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty; Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0