- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Analytical Solution for the Ultimate Compression Capacity...
Open Collections
UBC Faculty Research and Publications
Analytical Solution for the Ultimate Compression Capacity of Unbonded Steel-Mesh-Reinforced Rubber Bearings Li, Han; Tian, Shengze; Dang, Xinzhi
Abstract
Unbonded steel-mesh-reinforced rubber bearings (USRBs) have been proposed as an alternative isolation bearing for small-to-medium-span highway bridges. It replaces the steel plate reinforcement of common unbonded laminated rubber bearings (ULNR) with special steel wire meshes, resulting in improved lateral properties and seismic performance. However, the impact of this novel steel wire mesh reinforcement on the ultimate compression capacity of USRB has not been studied. To this end, theoretical and experimental analysis of the ultimate compression capacity of USRBs were carried out. The closed-form analytical solution of the ultimate compression capacity of USRBs was derived from a simplified USRB model employing elasticity theory. A parametric study was conducted considering the geometric and material properties. Ultimate compression tests were conducted on 19 USRB specimens to further calibrate the analytical solution, considering the influence of the number of reinforcement layers. An efficient solution for USRBs’ ultimate compression capacity was obtained via multilinear regression of the calibrated analytical results. The efficient solution can simplify the estimation of USRBs’ ultimate compression capacity while maintaining the same accuracy as the calibrated solution. Based on the efficient solution, the design process of a USRB with a specific ultimate compression capacity was illustrated.
Item Metadata
Title |
Analytical Solution for the Ultimate Compression Capacity of Unbonded Steel-Mesh-Reinforced Rubber Bearings
|
Creator | |
Contributor | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2024-03-20
|
Description |
Unbonded steel-mesh-reinforced rubber bearings (USRBs) have been proposed as an alternative isolation bearing for small-to-medium-span highway bridges. It replaces the steel plate reinforcement of common unbonded laminated rubber bearings (ULNR) with special steel wire meshes, resulting in improved lateral properties and seismic performance. However, the impact of this novel steel wire mesh reinforcement on the ultimate compression capacity of USRB has not been studied. To this end, theoretical and experimental analysis of the ultimate compression capacity of USRBs were carried out. The closed-form analytical solution of the ultimate compression capacity of USRBs was derived from a simplified USRB model employing elasticity theory. A parametric study was conducted considering the geometric and material properties. Ultimate compression tests were conducted on 19 USRB specimens to further calibrate the analytical solution, considering the influence of the number of reinforcement layers. An efficient solution for USRBs’ ultimate compression capacity was obtained via multilinear regression of the calibrated analytical results. The efficient solution can simplify the estimation of USRBs’ ultimate compression capacity while maintaining the same accuracy as the calibrated solution. Based on the efficient solution, the design process of a USRB with a specific ultimate compression capacity was illustrated.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2024-04-23
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0441477
|
URI | |
Affiliation | |
Citation |
Buildings 14 (3): 839 (2024)
|
Publisher DOI |
10.3390/buildings14030839
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty; Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0