- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Validating Landsat Analysis Ready Data for Nearshore...
Open Collections
UBC Faculty Research and Publications
Validating Landsat Analysis Ready Data for Nearshore Sea Surface Temperature Monitoring in the Northeast Pacific Wachmann, Alena; Starko, Samuel; Neufeld, Christopher J.; Costa, Maycira
Abstract
In the face of global ocean warming, monitoring essential climate variables from space is necessary for understanding regional trends in ocean dynamics and their subsequent impacts on ecosystem health. Analysis Ready Data (ARD), being preprocessed satellite-derived products such as Sea Surface Temperature (SST), allow for easy synoptic analysis of temperature conditions given the consideration of regional biases within a dynamic range. This is especially true for SST retrieval in thermally complex coastal zones. In this study, we assessed the accuracy of 30 m resolution Landsat ARD Surface Temperature products to measure nearshore SST, derived from Landsat 8 TIRS, Landsat 7 ETM+, and Landsat 5 TM thermal bands over a 37-year period (1984–2021). We used in situ lighthouse and buoy matchup data provided by Fisheries and Oceans Canada (DFO). Excellent agreement (R2 of 0.94) was found between Landsat and spring/summer in situ SST at the farshore buoy site (>10 km from the coast), with a Landsat mean bias (root mean square error) of 0.12 °C (0.95 °C) and a general pattern of SST underestimation by Landsat 5 of −0.28 °C (0.96 °C) and overestimation by Landsat 8 of 0.65 °C (0.98 °C). Spring/summer nearshore matchups revealed the best Landsat mean bias (root mean square error) of −0.57 °C (1.75 °C) at 90–180 m from the coast for ocean temperatures between 5 °C and 25 °C. Overall, the nearshore image sampling distance recommended in this manuscript seeks to capture true SST as close as possible to the coastal margin—and the critical habitats of interest—while minimizing the impacts of pixel mixing and adjacent land emissivity on satellite-derived SST.
Item Metadata
Title |
Validating Landsat Analysis Ready Data for Nearshore Sea Surface Temperature Monitoring in the Northeast Pacific
|
Creator | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2024-03-06
|
Description |
In the face of global ocean warming, monitoring essential climate variables from space is necessary for understanding regional trends in ocean dynamics and their subsequent impacts on ecosystem health. Analysis Ready Data (ARD), being preprocessed satellite-derived products such as Sea Surface Temperature (SST), allow for easy synoptic analysis of temperature conditions given the consideration of regional biases within a dynamic range. This is especially true for SST retrieval in thermally complex coastal zones. In this study, we assessed the accuracy of 30 m resolution Landsat ARD Surface Temperature products to measure nearshore SST, derived from Landsat 8 TIRS, Landsat 7 ETM+, and Landsat 5 TM thermal bands over a 37-year period (1984–2021). We used in situ lighthouse and buoy matchup data provided by Fisheries and Oceans Canada (DFO). Excellent agreement (R2 of 0.94) was found between Landsat and spring/summer in situ SST at the farshore buoy site (>10 km from the coast), with a Landsat mean bias (root mean square error) of 0.12 °C (0.95 °C) and a general pattern of SST underestimation by Landsat 5 of −0.28 °C (0.96 °C) and overestimation by Landsat 8 of 0.65 °C (0.98 °C). Spring/summer nearshore matchups revealed the best Landsat mean bias (root mean square error) of −0.57 °C (1.75 °C) at 90–180 m from the coast for ocean temperatures between 5 °C and 25 °C. Overall, the nearshore image sampling distance recommended in this manuscript seeks to capture true SST as close as possible to the coastal margin—and the critical habitats of interest—while minimizing the impacts of pixel mixing and adjacent land emissivity on satellite-derived SST.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2024-03-21
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0440712
|
URI | |
Affiliation | |
Citation |
Remote Sensing 16 (5): 920 (2024)
|
Publisher DOI |
10.3390/rs16050920
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty; Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0