UBC Faculty Research and Publications

Root Fragment Amendments Increase Nematode Density and Mycobiome Stochasticity in Douglas-Fir Seedlings Super, Laura; Gorzelak, Monika A.; Guy, Robert D.

Abstract

Relatively little is known about whole-plant fungal communities (mycobiome) and associated soil nematodes, especially with respect to woody plant seedlings and disturbance caused by forest harvesting. In a growth chamber experiment, we tested simulated clear-cut soil conditions on shoot biomass, total soil nematode density, and the shoot and root mycobiome of Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, seedlings. Soil treatments included unamended bare soil and soil amended with root segments of kinnikinnick, Arctostaphylos uva-ursi (L.) Spreng., pinegrass, Calamagrostis rubescens Buckley, or P. menziesii seedlings. We used next-generation Illumina sequencing and the PIPITS pipeline to obtain fungal taxa used for mycobiome community richness and Jaccard-based taxonomic normalized stochasticity ratio to assess mycobiome community assembly stochasticity. Total nematode density, measured from Baermann funnel extractions, increased in soils supplemented with A. uva-ursi or C. rubescens root segments. Root mycobiomes were more stochastic in the A. uva-ursi than P. menziesii or the bare conditions, whereas the shoot mycobiome was more stochastic in the C. rubescens treatment than in the P. menziesii treatment. Our results suggest that refugia plants impact the phyto-biome, in this case plant-associated nematodes and the stochasticity of root and shoot mycobiome community assembly, while not showing noticeable impacts on above-ground plant growth.

Item Media

Item Citations and Data

Rights

CC BY 4.0