UBC Faculty Research and Publications

A Review of Image Inpainting Methods Based on Deep Learning Xu, Zishan; Zhang, Xiaofeng; Chen, Wei; Yao, Minda; Liu, Jueting; Xu, Tingting; Wang, Zehua

Abstract

Image Inpainting is an age-old image processing problem, with people from different eras attempting to solve it using various methods. Traditional image inpainting algorithms have the ability to repair minor damage such as scratches and wear. However, with the rapid development of deep learning in the field of computer vision in recent years, coupled with abundant computing resources, methods based on deep learning have increasingly highlighted their advantages in semantic feature extraction, image transformation, and image generation. As such, image inpainting algorithms based on deep learning have become the mainstream in this domain.In this article, we first provide a comprehensive review of some classic deep-learning-based methods in the image inpainting field. Then, we categorize these methods based on component optimization, network structure design optimization, and training method optimization, discussing the advantages and disadvantages of each approach. A comparison is also made based on public datasets and evaluation metrics in image inpainting. Furthermore, the article delves into the applications of current image inpainting technologies, categorizing them into three major scenarios: object removal, general image repair, and facial inpainting. Finally, current challenges and prospective developments in the field of image inpainting are discussed.

Item Media

Item Citations and Data

Rights

CC BY 4.0