- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Integrated proteomic analysis of low-grade gliomas...
Open Collections
UBC Faculty Research and Publications
Integrated proteomic analysis of low-grade gliomas reveals contributions of 1p-19q co-deletion to oligodendroglioma Wong, Derek; Lee, Tae Hoon; Lum, Amy; Tao, Valerie Lan; Yip, Stephen
Abstract
Diffusely infiltrative low-grade gliomas (LGG) are primary brain tumours that arise predominantly in the cerebral hemispheres of younger adults. LGG can display either astrocytic or oligodendroglial histology and do not express malignant histological features. Vast majority of LGG are unified by IDH mutations. Other genomic features including ATRX as well as copy number status of chromosomes 1p and 19q serve to molecularly segregate this tumor group. Despite the exponential gains in molecular profiling and understanding of LGG, survival rates and treatment options have stagnated over the past few decades with few advancements. In this study, we utilize low grade glioma RNA-seq data from the Cancer Genome Atlas (TCGA-LGG) and tandem mass-spectrometry on an in-house cohort of 54 formalin-fixed paraffin-embedded (FFPE) LGG specimens to investigate the transcriptomic and proteomic profiles across the three molecular subtypes of LGG (Type I: IDH mutant – 1p19q co-deleted, Type II: IDH mutant – 1p19q retained, Type III: IDH wildtype). Within the 3 LGG subtypes, gene expression was driven heavily by IDH mutation and 1p19q co-deletion. In concordance with RNA expression, we were able to identify decreased expressions of proteins coded in 1p19q in Type I LGG. Further proteomic analysis identified 54 subtype specific proteins that were used to classify the three subtypes using a multinomial regression model (AUC = 0.911). Type I LGG were found to have increased protein expression of several metabolic proteins while Type III LGG were found to have increased immune infiltration and inflammation related proteins. Here we present the largest proteomic cohort of LGG and show that proteomic profiles can be successfully analyzed from FFPE tissues. We uncover previously known and novel subtype specific markers that are useful for the proteomic classification of LGG subtypes.
Item Metadata
Title |
Integrated proteomic analysis of low-grade gliomas reveals contributions of 1p-19q co-deletion to oligodendroglioma
|
Creator | |
Contributor | |
Publisher |
BioMed Central
|
Date Issued |
2022-05-07
|
Description |
Diffusely infiltrative low-grade gliomas (LGG) are primary brain tumours that arise predominantly in the cerebral hemispheres of younger adults. LGG can display either astrocytic or oligodendroglial histology and do not express malignant histological features. Vast majority of LGG are unified by IDH mutations. Other genomic features including ATRX as well as copy number status of chromosomes 1p and 19q serve to molecularly segregate this tumor group. Despite the exponential gains in molecular profiling and understanding of LGG, survival rates and treatment options have stagnated over the past few decades with few advancements. In this study, we utilize low grade glioma RNA-seq data from the Cancer Genome Atlas (TCGA-LGG) and tandem mass-spectrometry on an in-house cohort of 54 formalin-fixed paraffin-embedded (FFPE) LGG specimens to investigate the transcriptomic and proteomic profiles across the three molecular subtypes of LGG (Type I: IDH mutant – 1p19q co-deleted, Type II: IDH mutant – 1p19q retained, Type III: IDH wildtype). Within the 3 LGG subtypes, gene expression was driven heavily by IDH mutation and 1p19q co-deletion. In concordance with RNA expression, we were able to identify decreased expressions of proteins coded in 1p19q in Type I LGG. Further proteomic analysis identified 54 subtype specific proteins that were used to classify the three subtypes using a multinomial regression model (AUC = 0.911). Type I LGG were found to have increased protein expression of several metabolic proteins while Type III LGG were found to have increased immune infiltration and inflammation related proteins. Here we present the largest proteomic cohort of LGG and show that proteomic profiles can be successfully analyzed from FFPE tissues. We uncover previously known and novel subtype specific markers that are useful for the proteomic classification of LGG subtypes.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2022-06-06
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution 4.0 International (CC BY 4.0)
|
DOI |
10.14288/1.0413778
|
URI | |
Affiliation | |
Citation |
Acta Neuropathologica Communications. 2022 May 07;10(1):70
|
Publisher DOI |
10.1186/s40478-022-01372-1
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty; Researcher
|
Copyright Holder |
The Author(s)
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution 4.0 International (CC BY 4.0)