- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Torque Generation of the Endodontic Instruments: A...
Open Collections
UBC Faculty Research and Publications
Torque Generation of the Endodontic Instruments: A Narrative Review Kwak, Sang Won; Ya; Liu, He; Kim, Hyeon-Cheol; Haapasalo, M. (Markus)
Abstract
As the use of nickel-titanium (NiTi) file systems for root canal therapy has become popular; hence, knowledge and understanding of the characteristics of NiTi files is essential for dentists. Unintended sudden fracture can occur during root canal shaping, and it is important to understand the conditions that may cause instrument fractures. Torque is defined as the force required to rotate the NiTi file and can be considered of as a parameter for the stress generated. The endodontic engine maintains a constant rotational speed by adjusting torque regardless of the root canal conditions. The process of root canal shaping by rotary instruments is a series of actions that requires torque and generates stress to both the teeth and the NiTi instruments. The generated stress may induce the strain accumulation on NiTi instrument and the canal wall and lead to the development of microcrack in the instrument and dentinal wall. Therefore, understanding of torque and stress generated is important to prevent the fractures to the instrument and the teeth. This stress has been measured using various experimental approaches, including microcrack observation by using a microscope or computed tomography, attaching strain gauges to the teeth, and finite element analysis. This review focuses on the stress generated to the teeth and the instrument during instrumentation under various experimental conditions. The factors related to torque generation are also discussed.
Item Metadata
Title |
Torque Generation of the Endodontic Instruments: A Narrative Review
|
Creator | |
Contributor | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2022-01-17
|
Description |
As the use of nickel-titanium (NiTi) file systems for root canal therapy has become popular; hence, knowledge and understanding of the characteristics of NiTi files is essential for dentists. Unintended sudden fracture can occur during root canal shaping, and it is important to understand the conditions that may cause instrument fractures. Torque is defined as the force required to rotate the NiTi file and can be considered of as a parameter for the stress generated. The endodontic engine maintains a constant rotational speed by adjusting torque regardless of the root canal conditions. The process of root canal shaping by rotary instruments is a series of actions that requires torque and generates stress to both the teeth and the NiTi instruments. The generated stress may induce the strain accumulation on NiTi instrument and the canal wall and lead to the development of microcrack in the instrument and dentinal wall. Therefore, understanding of torque and stress generated is important to prevent the fractures to the instrument and the teeth. This stress has been measured using various experimental approaches, including microcrack observation by using a microscope or computed tomography, attaching strain gauges to the teeth, and finite element analysis. This review focuses on the stress generated to the teeth and the instrument during instrumentation under various experimental conditions. The factors related to torque generation are also discussed.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2022-02-23
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0406636
|
URI | |
Affiliation | |
Citation |
Materials 15 (2): 664 (2022)
|
Publisher DOI |
10.3390/ma15020664
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty; Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0