UBC Faculty Research and Publications

The Influence of a Submarine Canyon on the Circulation and Cross-Shore Exchanges around an Upwelling Front Saldías, Gonzalo; Allen, Susan


The response of a coastal ocean numerical model, typical of eastern boundaries, is investigated under upwelling-favorable wind forcing and with/without the presence of a submarine canyon. Experiments were run over three contrasting shelf depth/slope bathymetries and forced by an upwelling-favorable alongshore wind. Random noise in the wind stress field was used to trigger the onset of frontal instabilities, which formed around the upwelling front. Their development and evolution are enhanced over deeper (and less inclined) shelves. Experiments without a submarine canyon agree well with previous studies of upwelling frontal instabilities; baroclinic instabilities grow along the front in time. The addition of a submarine canyon incising the continental shelf dramatically changes the circulation and frontal characteristics. Intensified upwelling is channeled through the downstream side of the canyon in all depth/slope configurations. Farther downstream a downwelling area is generated, being larger and stronger on a shallow shelf. The canyon affects mainly the location of the southward upwelling jet, which is deflected inshore and accelerated after passing over the canyon. This process is accompanied by a break in the alongshore scale of the instabilities on either side of the canyon. Term balances of the depth-averaged cross-shore momentum equation reaffirm the downstream acceleration of the jet and the increased wavelength of the instabilities, and clarify the dominant balance between the advection and ageostrophic terms around the canyon.

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International