UBC Faculty Research and Publications

Simulating the Impacts of Hybrid Campus and Autonomous Electric Vehicles as GHG Mitigation Strategies: A Case Study for a Mid-Size Canadian Post-Secondary School Saha, Bijoy; Fatmi, Mahmudur Rahman

Abstract

This paper presents how a post-secondary institution like University of British Columbia’s Okanagan (UBCO) campus can reduce its carbon footprint and be aligned with the government’s target through promoting virtual campus and autonomous electric vehicles (AEVs). Different virtual campus scenarios are developed: online classes only, working-from-home only, and a hybrid of both. In the case of AEVs, alternative penetration rates for levels 2 and 5 are considered. A total of 50 scenarios are tested using a sub-area transport simulation model for UBCO, which is extracted from the regional travel demand forecasting model. The results suggest that a 40% AEV penetration rate coupled with fully in-person classes reduces GHG by ~36% compared to the 2018-level, which will help UBCO to achieve their 2030 emission reduction target and be aligned with the provincial target. The 50% AEV and 10% hybrid virtual campus reduces emissions by ~48%, which is aligned with the 2040 provincial target. A fully virtual campus will help to reach the 2050 provincial target by reducing GHG by ~76%. The results further demonstrate that level 5 AEVs produce lesser emissions than level 2 at a lower AEV penetration rate for the fully in-person campus scenario. At higher penetration rates, level 5 performs better only if it is coupled with 10% of students, faculties and staffs attending virtual campus scenario.

Item Media

Item Citations and Data

Rights

CC BY 4.0