- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- An Improved Residual Network for Pork Freshness Detection...
Open Collections
UBC Faculty Research and Publications
An Improved Residual Network for Pork Freshness Detection Using Near-Infrared Spectroscopy Zou, Liang; Liu, Weinan; Lei, Meng; Yu, Xinhui
Abstract
Effective and rapid assessment of pork freshness is significant for monitoring pork quality. However, a traditional sensory evaluation method is subjective and physicochemical analysis is time-consuming. In this study, the near-infrared spectroscopy (NIRS) technique, a fast and non-destructive analysis method, is employed to determine pork freshness. Considering that commonly used statistical modeling methods require preprocessing data for satisfactory performance, this paper presents a one-dimensional squeeze-and-excitation residual network (1D-SE-ResNet) to construct the complex relationship between pork freshness and NIRS. The developed model enhances the one-dimensional residual network (1D-ResNet) with squeeze-and-excitation (SE) blocks. As a deep learning model, the proposed method is capable of extracting features from the input spectra automatically and can be used as an end-to-end model to simplify the modeling process. A comparison between the proposed method and five popular classification models indicates that the 1D-SE-ResNet achieves the best performance, with a classification accuracy of 93.72%. The research demonstrates that the NIRS analysis technique based on deep learning provides a promising tool for pork freshness detection and therefore is helpful for ensuring food safety.
Item Metadata
Title |
An Improved Residual Network for Pork Freshness Detection Using Near-Infrared Spectroscopy
|
Creator | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2021-09-30
|
Description |
Effective and rapid assessment of pork freshness is significant for monitoring pork quality. However, a traditional sensory evaluation method is subjective and physicochemical analysis is time-consuming. In this study, the near-infrared spectroscopy (NIRS) technique, a fast and non-destructive analysis method, is employed to determine pork freshness. Considering that commonly used statistical modeling methods require preprocessing data for satisfactory performance, this paper presents a one-dimensional squeeze-and-excitation residual network (1D-SE-ResNet) to construct the complex relationship between pork freshness and NIRS. The developed model enhances the one-dimensional residual network (1D-ResNet) with squeeze-and-excitation (SE) blocks. As a deep learning model, the proposed method is capable of extracting features from the input spectra automatically and can be used as an end-to-end model to simplify the modeling process. A comparison between the proposed method and five popular classification models indicates that the 1D-SE-ResNet achieves the best performance, with a classification accuracy of 93.72%. The research demonstrates that the NIRS analysis technique based on deep learning provides a promising tool for pork freshness detection and therefore is helpful for ensuring food safety.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2021-11-09
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0403354
|
URI | |
Affiliation | |
Citation |
Entropy 23 (10): 1293 (2021)
|
Publisher DOI |
10.3390/e23101293
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0