UBC Faculty Research and Publications

High-definition mapping of the atria using a novel multipolar mapping catheter in patients with complex adult congenital heart disease Paymard, Mohammad; Chakrabarti, Santabhanu


Background The Advisor™ HD Grid Mapping Catheter (Abbott Technologies, Minneapolis, MN) has been recently introduced. Although the clinical use of HD Grid mapping catheter is well described in adults with no congenital heart disease, there is limited data on the feasibility of using the HD Grid multipolar catheter to create voltage and activation mapping in adults with congenital heart disease. The purpose of this study was to evaluate the safety and technical feasibility of using the Advisor™ HD Grid mapping catheter during the catheter ablation of atrial arrhythmias in adults with congenital heart disease. We included 6 consecutive adults with congenital heart disease suffering from atrial arrhythmias in our study. The HD Grid mapping catheter was used to perform voltage and activation mapping. Results Six patients with congenital heart diseases (d-TGA n = 1, Tricuspid atresia n = 1, atrioventricular defect repair n = 1, secundum atrial septal defect n = 1, double-inlet single-ventricle n = 1, Tetralogy of Fallot = 1); majority (84%) male, with the mean age was 35 ± 10 years included in our series. The mean ablation duration and the fluoroscopy time were 789 ± 433 and 502 ± 355 s, respectively. The mean radiation dose was 7.52 ± 9 milliGy/cm2. The HD Grid mapping catheter was used successfully for entire arrhythmia mapping in 5 out of 6 cases. During one procedure, HD Grid mapping catheter could not be used for the entire mapping due to suboptimal reach through baffle puncture. The acute success rate of ablation was 100% with no immediate complications. Conclusions The use of HD Grid mapping catheter is a safe and valuable adjunct to accurately create voltage and activation mapping in ACHD patients undergoing radiofrequency catheter ablation. However, a contact force-sensing ablation catheter should be considered in conjunction to supplement data acquisition in challenging anatomy and substrates.

Item Media

Item Citations and Data


Attribution 4.0 International (CC BY 4.0)