- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Artificial Cathode-Electrolyte Interphase towards High-Performance...
Open Collections
UBC Faculty Research and Publications
Artificial Cathode-Electrolyte Interphase towards High-Performance Lithium-Ion Batteries: A Case Study of β-AgVO3 Liu, Liang; Dai, Wei; Zhu, Hongzheng; Gu, Yanguang; Wang, Kangkang; Li, Chao; Pan, Chaofeng; Zhou, Min; Liu, Jian
Abstract
Silver vanadates (SVOs) have been widely investigated as cathode materials for high-performance lithium-ion batteries (LIBs). However, similar to most vanadium-based materials, SVOs suffer from structural collapse/amorphization and vanadium dissolution from the electrode into the electrolyte during the Li insertion and extraction process, causing poor electrochemical performance in LIBs. We employ ultrathin Al₂O₃ coatings to modify β-AgVO₃ (as a typical example of SVOs) by an atomic layer deposition (ALD) technique. The galvanostatic charge-discharge test reveals that ALD Al₂O₃ coatings with different thicknesses greatly affected the cycling performance. Especially, the β-AgVO₃ electrode with ~10 nm Al₂O₃ coating (100 ALD cycles) exhibits a high specific capacity of 271 mAh g⁻¹, and capacity retention is 31%, much higher than the uncoated one of 10% after 100 cycles. The Coulombic efficiency is improved from 89.8% for the pristine β-AgVO₃ to 98.2% for Al₂O₃-coated one. Postcycling analysis by cyclic voltammetry (CV), cyclic voltammetry (EIS), and scanning electron microscopy (SEM) disclose that 10-nm Al₂O₃ coating greatly reduces cathode-electrolyte interphase (CEI) resistance and the charge transfer resistance in the β-AgVO₃ electrode. Al₂O₃ coating by the ALD method is a promising technique to construct artificial CEI and stabilize the structure of SVOs, providing new insights for vanadium-based electrodes and their energy storage devices.
Item Metadata
Title |
Artificial Cathode-Electrolyte Interphase towards High-Performance Lithium-Ion Batteries: A Case Study of β-AgVO3
|
Creator | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2021-02-25
|
Description |
Silver vanadates (SVOs) have been widely investigated as cathode materials for high-performance lithium-ion batteries (LIBs). However, similar to most vanadium-based materials, SVOs suffer from structural collapse/amorphization and vanadium dissolution from the electrode into the electrolyte during the Li insertion and extraction process, causing poor electrochemical performance in LIBs. We employ ultrathin Al₂O₃ coatings to modify β-AgVO₃ (as a typical example of SVOs) by an atomic layer deposition (ALD) technique. The galvanostatic charge-discharge test reveals that ALD Al₂O₃ coatings with different thicknesses greatly affected the cycling performance. Especially, the β-AgVO₃ electrode with ~10 nm Al₂O₃ coating (100 ALD cycles) exhibits a high specific capacity of 271 mAh g⁻¹, and capacity retention is 31%, much higher than the uncoated one of 10% after 100 cycles. The Coulombic efficiency is improved from 89.8% for the pristine β-AgVO₃ to 98.2% for Al₂O₃-coated one. Postcycling analysis by cyclic voltammetry (CV), cyclic voltammetry (EIS), and scanning electron microscopy (SEM) disclose that 10-nm Al₂O₃ coating greatly reduces cathode-electrolyte interphase (CEI) resistance and the charge transfer resistance in the β-AgVO₃ electrode. Al₂O₃ coating by the ALD method is a promising technique to construct artificial CEI and stabilize the structure of SVOs, providing new insights for vanadium-based electrodes and their energy storage devices.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2021-03-26
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0396410
|
URI | |
Affiliation | |
Citation |
Nanomaterials 11 (3): 569 (2021)
|
Publisher DOI |
10.3390/nano11030569
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0