- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Nanopore-Level Wood-Water Interactions—A Molecular...
Open Collections
UBC Faculty Research and Publications
Nanopore-Level Wood-Water Interactions—A Molecular Simulation Study Shi, Jingbo; Avramidis, Stavros
Abstract
The nanoscale wood-water interaction strength, accessible sorption sites, and cell wall pore sizes are important factors that drive water sorption and the hysteresis phenomenon in wood. In this work, these factors were quantitatively studied using molecular simulations based on a cell wall pore model, previously developed by the authors. Specifically, the wall-water interaction strength, the sorption sites network including their number, interaction range, strength, and spatial distributions were set at a series of theoretical values as simulation input parameters. The results revealed that most of the investigated parameters significantly affected both sorption isotherms and hysteresis. Water monolayers and clusters were observed on the simulated pore surface when the wood-water interaction and sorption site strength were set at unrealistically high values. Furthermore, multiple linear regression models suggested that wood-water interaction and sorption site parameters were coupled in determining sorption isotherms, but not in determining hysteresis.
Item Metadata
Title |
Nanopore-Level Wood-Water Interactions—A Molecular Simulation Study
|
Creator | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2021-03-18
|
Description |
The nanoscale wood-water interaction strength, accessible sorption sites, and cell wall pore sizes are important factors that drive water sorption and the hysteresis phenomenon in wood. In this work, these factors were quantitatively studied using molecular simulations based on a cell wall pore model, previously developed by the authors. Specifically, the wall-water interaction strength, the sorption sites network including their number, interaction range, strength, and spatial distributions were set at a series of theoretical values as simulation input parameters. The results revealed that most of the investigated parameters significantly affected both sorption isotherms and hysteresis. Water monolayers and clusters were observed on the simulated pore surface when the wood-water interaction and sorption site strength were set at unrealistically high values. Furthermore, multiple linear regression models suggested that wood-water interaction and sorption site parameters were coupled in determining sorption isotherms, but not in determining hysteresis.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2021-03-26
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0396398
|
URI | |
Affiliation | |
Citation |
Forests 12 (3): 356 (2021)
|
Publisher DOI |
10.3390/f12030356
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0