- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- The papain-like protease of coronaviruses cleaves ULK1...
Open Collections
UBC Faculty Research and Publications
The papain-like protease of coronaviruses cleaves ULK1 to disrupt host autophagy Mohamud, Yasir; Xue, Yuan Chao; Liu, Huitao; Ng, Chen Seng; Bahreyni, Amirhossein; Jan, Eric; Luo, Honglin
Abstract
The ongoing pandemic of COVID-19 alongside the outbreaks of SARS in 2003 and MERS in 2012 underscore the significance to understand betacoronaviruses as a global health challenge. SARS-CoV-2, the etiological agent for COVID-19, has infected over 50 million individuals’ worldwide with more than ~1 million fatalities. Autophagy modulators have emerged as potential therapeutic candidates against SARS-CoV-2 but recent clinical setbacks urge for better understanding of viral subversion of autophagy. Using MHV-A59 as a model betacoronavirus, time-course infections revealed significant loss in the protein level of ULK1, a canonical autophagy-regulating kinase, and the concomitant appearance of a possible cleavage fragment. To investigate whether virus-encoded proteases target ULK1, we conducted in-vitro and cellular cleavage assays and identified ULK1 as a novel bona fide substrate of SARS-CoV-2 papain-like protease (PLpro). Mutagenesis studies discovered that ULK1 is cleaved at a conserved PLpro recognition sequence (LGGG) after G499, separating its N-terminal kinase domain from a Cterminal substrate recognition region. Over-expression of SARS-CoV-2 PLpro is sufficient to impair starvation-induced autophagy and disrupt formation of ULK1-ATG13 complex. Finally, we demonstrated a dual role for ULK1 in MHV-A59 replication, serving a pro-viral functions during early replication that is inactivated at late stages of infection. In conclusion, our study identified a new mechanism by which PLpro of betacoronaviruses induces viral pathogenesis by targeting cellular autophagy.
Item Metadata
Title |
The papain-like protease of coronaviruses cleaves ULK1 to disrupt host autophagy
|
Creator | |
Contributor | |
Publisher |
Biochemical and Biophysical Research Communications
|
Date Issued |
2021-02-12
|
Description |
The ongoing pandemic of COVID-19 alongside the outbreaks of SARS in 2003 and MERS in 2012 underscore the significance to understand betacoronaviruses as a global health challenge. SARS-CoV-2, the etiological agent for COVID-19, has infected over 50 million individuals’ worldwide with more than ~1 million fatalities. Autophagy modulators have emerged as potential therapeutic candidates against SARS-CoV-2 but recent clinical setbacks urge for better understanding of viral subversion of autophagy. Using MHV-A59 as a model betacoronavirus, time-course infections revealed significant loss in the protein level of ULK1, a canonical autophagy-regulating kinase, and the concomitant appearance of a possible cleavage fragment. To investigate whether virus-encoded proteases target ULK1, we conducted in-vitro and cellular cleavage assays and identified ULK1 as a novel bona fide substrate of SARS-CoV-2 papain-like protease (PLpro). Mutagenesis studies discovered that ULK1 is cleaved at a conserved PLpro recognition sequence (LGGG) after G499, separating its N-terminal kinase domain from a Cterminal substrate recognition region. Over-expression of SARS-CoV-2 PLpro is sufficient to impair starvation-induced autophagy and disrupt formation of ULK1-ATG13 complex. Finally, we demonstrated a dual role for ULK1 in MHV-A59 replication, serving a pro-viral functions during early replication that is inactivated at late stages of infection. In conclusion, our study identified a new mechanism by which PLpro of betacoronaviruses induces viral pathogenesis by targeting cellular autophagy.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2022-02-12
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0396107
|
URI | |
Affiliation | |
Citation |
Mohamud, Y., Xue, Y. C., Liu, H., Ng, C. S., Bahreyni, A., Jan, E., & Luo, H. (2021). The papain-like protease of coronaviruses cleaves ULK1 to disrupt host autophagy. Biochemical and Biophysical Research Communications, 540, 75-82.
|
Publisher DOI |
10.1016/j.bbrc.2020.12.091
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty; Researcher; Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International